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Abstract 
 
The global awareness of the impacts of climate change is 
a key driver of the growing interest in effectively 
harnessing renewable energy resources. The concentrated 
solar plant (CSP) technology has emerged as a promising 
approach to harness solar energy, with several implement-
tations under way around the world. CSP is, typically, 
coupled with the deployment of thermal energy storage 
(TES) so as to provide the CSP operator the flexibility to 
produce electricity beyond the sunrise-to-sunset period. 
Indeed, the effective utilization of TES requires a 
scheduler to optimize the value of the CSP-produced 
energy. The assessment of CSP sets up an acute need for a 
practical simulation tool to study the effects of the 
integrated CSP with TES on the systems. Such a tool must 
explicitly represent the uncertainty, variability and inter-
mittency of the solar resource and its interactions with the 
loads and other resources. We report on the development 
of a probabilistic simulation tool aimed at addressing 
these needs. The identification of distinct direct normal 
irradiation (DNI) patterns is an important step in the 
extension of the conventional probabilistic simulation 
approach to the systems with the integrated CSP resource. 
We use clustering techniques to identify the various 
pattern groups – referred to as regimes – and construct the 
CSP power output model based on the identified regimes. 
We make detailed use of conditional probability concepts 
in the incorporation of this model into the probabilistic 
production simulation approach. We carry out an 
extensive set of simulations for testing the extended 
approach. To illustrate the capabilities of this approach to 
quantify the variable effects of the systems with the 
integrated CSP resources over longer-term periods, we 
present the representative simulation results on a modified 
version of the IEEE Reliability Test System (RTS), with an 
integrated CSP resource. The load data is based from the 
scaled 2011 ERCOT load data.  The study results provide 
insights into the CSP impacts on the variable effects of the 
systems and demonstrate the effectiveness of the extended 
simulation approach. 

Introduction 
 
Due to increasing awareness of the global climate change 
challenges, many countries are implementing renewable 
energy projects to generate cleaner energy. By 2010, 
renewable energy resources supplied about a sixth of the 
energy consumed throughout the world [1]. In the solar 
energy arena, concentrated solar plant (CSP) technology 
has recently experienced a steady growth, with 17  GW of 
CSP projects under development around the world [2]. 
Typically, CSP technology uses mirrors to reflect sunlight 
onto receivers and convert the collected solar energy into 
thermal energy, which is then used in a steam turbine or 
heat engine that drives a generator to produce electricity. 
Parabolic trough, solar tower, dish stirling, and linear 
Fresnel reflector, are the four common forms of CSP 
technologies. Compared to other CSP technologies, the 
primary difference of solar tower technology is the 
utilization of many large, flat mirrors, namely heliostats, 
to track the sun and focus the sunlight onto a central 
receiver [3]. A particularly beneficial feature of CSP is the 
incorporation of a thermal energy storage (TES) unit to 
store a fraction of the thermal energy for later use, 
possibly beyond the sunset [4]. As such, unlike photo-
voltaic or PV panels, a CSP resource can collect only the 
DNI and generate electricity beyond the time there is 
sunshine with the utilization of the TES. Still, the effective 
integration of CSP resources into the grid poses major 
challenges due to the inherent uncertainty, variability and 
intermittency nature of DNI. These characteristics impact 
markedly the times and the quantities of CSP energy 
production. Moreover, the efficient deployment of the 
TES, requires the use of a scheduler to optimize the 
contribution of the CSP resource to displace expensive 
and polluting conventional generation. Given the limited 
controllability of DNI, CSP resources can contribute 
whenever either solar or TES thermal energy is available. 
The extent to which the CSP energy production and the 
loads are correlated is, consequently, an important 
consideration in the evaluation of the CSP contribution. 
Unlike the difficult-to-predict variability of the DNI, the 
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loads follow certain diurnal and weekly patterns, with 
higher demand during the weekdays than the weekends 
and with peaks, typically, at similar periods of the 
weekdays and lower values at nights. We illustrate in 
Fig.1 the shape of the hourly DNI at Midland, TX, in 
comparison with that of the ERCOT hourly load for a 
representative winter week. The plots clearly indicate the 
weakly correlated behavior of DNI with the loads [5], [6] 
which influences the impacts of the CSP contribution. The 
added flexibility afforded by the TES is a key reason for 
the growing interest in CSP [7]. The contribution of CSP 
resources is nearly 25 % of the U.S. utility-scale solar 
projects under development. By 2014, Spain will have 
installed 2.5 GW CSP resources, which will supply nearly 
3 % of total electricity consumption in Spain [8]. Other 
countries involved in wide commercialization of CSP 
resources include China and Australia [9]. 
 

 
 
Fig.1:  Plots of the chronological Midland, TX, DNI and the ERCOT 
hourly loads for the January 5–11, 2009 week 
 
The increasing CSP role triggers an acute need for an 
appropriate simulation tool to effectively capture the 
nature of the CSP resources so as to quantify the variable 
effects of systems with integrated CSP resources. To 
evaluate these effects, such a tool needs to consider the 
operational schedule of the CSP, the time-varying and 
uncertain DNI patterns, and the interactions between CSP 
resources and loads and other resources. We address this 
need with the extension of the conventional probabilistic 
simulation to construct a practical simulation approach for 
systems with integrated CSP resources. 
 
We construct the extended production simulation tool and 
simulate the systems with the integrated CSP resources 
with the explicit representation of the uncertainty in the 
CSP outputs, in addition to that of the controllable 
resources and loads. We use the extended approach to 
assess the impacts of systems with integrated CSP 
resources on the variable effects – the expected 
production costs, expected CO 2 emissions and reliability 
metrics. The extension of the simulation tool makes use of 

the regime-based CSP power output model we construct 
to represent the uncertainty in the CSP with TES outputs. 
We deploy statistical clustering techniques to obtain an 
analytic characterization of the DNI uncertainty using the 
historical hourly DNI for each season. We introduce a 
common time scale to allow the meaningful comparison of 
daily DNI patterns to find the clusters. We develop a 
systematic approach to derive the probabilistic CSP power 
output model, taking into account the TES schedule 
impacts, based on the regime characterization of DNI data 
to probabilistically represent the CSP power output for 
each regime. We incorporate the CSP power output model 
into probabilistic simulation framework by effective 
utilization of conditional probability concepts. In this way, 
the proposed methodology can explicitly represent the 
uncertainty and variability of the CSP outputs. The major 
application of the extended simulation tool is to quantify 
the variable effects of the systems with the integrated CSP 
resources over longer-term periods. We select some 
representative results from the extensive studies we 
performed to illustrate the application of the extended 
probabilistic simulation approach. The results are for a 
modified version of the RTS [10], with an integrated CSP 
resource, and use historical DNI and ERCOT load data. 
These results provide a good indication of the capabilities 
of the approach to effectively assess the variable effects in 
systems with integrated CSP resources. 
 
The paper has four additional sections. In the second 
section, we focus on the CSP power output modeling and 
discuss in the third section the construction of the 
extended probabilistic simulation framework. In the fourth 
section, we present and discuss the representative results 
from various simulations performed. We summarize our 
contributions and provide directions for future work in the 
final section. 
 
CSP Modeling 

 
To quantify the longer-term impacts of the CSP resources 
integrated into the power systems, we construct a CSP 
power output model with the level of detail appropriate 
for representing the uncertainty, intermittency and 
variability nature of DNI and its impacts on the CSP 
output. We devote this section to the description of the 
probabilistic model, which we incorporate to construct our 
extended probabilistic simulation framework.  
 
Since the daily CSP power output patterns depend on the 
daily DNI patterns, which vary significantly from one 
season to another, we build our model on a seasonal basis. 
We start our modeling with an explicit analysis on the 
seasonal DNI data set. We collect DNI data from 
historical observations for D  days in a specific season. 
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We partition each day’s sunrise-to-sunset period into dM  
equal-duration sub-periods, with one observation from 
each sub-period. Let d, ma denote the DNI observed for 
the sub-period m  of day d . We construct the vector 

( ) 1 2[=d d, d, , ,  . ,a a .. a   ]
dd, M Ta  to collect the dM  

DNI observations from day d . Since DNI is random, we 
can view ( )da  as a realization of the DNI random 

variable (r.v.) vector [ ]
d(d ) d, 1 d, 2 d, M T, ,  . ,A = A A .. A

   

 .  
 
The fact that the duration of the sunrise-to-sunset period 
varies throughout the season and the year requires the 
introduction of a scaling scheme over the sunrise-to-
sunset-period to allow the comparison of DNI patterns in a 
meaningful way [11]. The scaling scheme maps each 

realization  ( ) ∈
dd Ma   into a common time scale with 

J  equal sub-periods for each day d in a season. The 
transformation from the sunrise-to-sunset period for each 
day d requires a different scaling factor into J-subperiod 
scaled time frame to construct the 
vector ( ) 1 2[ ]d d , d, d, J T, ,  . ,y y .. y=y , which collects 
the corresponding values of DNI for the J  scaled sub-

periods of day d. Here d, jy  corresponds to the DNI for 
the scaled sub-period j  of day d. In this way, we obtain 

the characterization ( )dy  to describe the DNI pattern of 
each day d in the scaled time frame.  Conceptually, we 
view the time scaling process as the transformation of  

( )da  into ( )dy  as shown in Fig.2.  
 

 
 
 
 
The collection ( )= { : 1, 2, ... , }=d d Dyy  using the 
common time frame allows the identification of similar 
DNI patterns. In our paper, we deploy the k-means 
clustering algorithm to construct R different clusters [12], 
with each cluster grouping a subset of days with similar 
daily DNI patterns as shown in Fig.3. Conceptually, we 
view the cluster R r  to consist of realizations of the r.v.s 

j
rY


 of the DNI for the scaled sub-
periods 1,  2,   ,  = …j J . We can use the samples in the 

subset R r  to estimate the moments of each j
rY


.  In 

addition, the probability of each subset R r  is estimated 

by the ratio | |/r̂ rπ D= R , 1,  2,   ,  = …r R .  In our 

work, we refer to the pair of r̂π  and the subset R r as the 

regime denoted by rR .  
 

 
 
 
We deploy the regime-based time-scaled DNI patterns in 
the probabilistic simulation framework to sample from 
each cluster R r  to represent DNI patterns. However, 

such samples must be judiciously inverse-scaled and 
expressed in the time frame of the production simulation. 
For an arbitrary day d, the inverse-scaled representation 
covers the sunrise-to-sunset period, which consists of dH  
equal-duration sub-periods. We assume that the DNI is 
constant in each inverse-scaled sub-period 

1 2= , , ... , dh H . Let d, hu  be the DNI in the inverse-
scaled sub-period h  of day d  and we 

construct ( ) 1 2[ ]
dd d, d, d, H T, ,  . ,u u .. u=u , the DNI 

vector over dH  sub-periods of day d . We can view the 
inverse-scaling process as transformation of the common-
time-scaled irradiation pattern into the inverse-scaled 
irradiation pattern over the sunrise-to-sunset period for 
day d. The regime-based DNI model allows us to use the 
samples in the subset R r  to compute the realizations of 

r.v. vector ( ) 1 2[ ]=
   

dd d, d, d, H T
r r r r, ,  . ,U U .. UU , where 



d, h
rU  represents DNI r.v. for the inverse-scaled sub-

period h  of day d  conditioned on regime rR . We 
summarize the inverse-scaling process in Fig.4.  
 

  Fig.2:  Diagram representation of scaling process for all days in data set 

  Fig.3:  Diagram representation of clustering process  

3 
 



 

 
 
 
We then discuss the steps to construct the probabilistic 
model of the CSP power output from the regime-based 
DNI model. For our purposes of this study, we start with 
focusing our analysis on the behavior of the CSP. The 
power output of the CSP depends on the nature of solar 
energy input, the specific details of the CSP configuration 
and the operational schedule.  The appropriate utilization 
of thermal storage allows the CSP to produce electricity 
when solar energy is not available. For purposes of 
concreteness, we assume that the TES is operated so as to 
optimize the value of energy produced by the CSP. As the 
solar energy input is zero outside the sunrise-to-sunset 
period, the CSP power output must be zero before sunrise 
and may be nonzero after sunset under the appropriate 
employment of the TES.  Thus we construct CSP power 

output vector ( ) 1 2[ ]′′ ′ ′ ′
dd d, d, d, H T, ,  . ,p p .. p=p , with 

′ d, hp  , the CSP power output in the sub-period h  of day 

d. The number of sub-periods ′ dH  covers the sunrise-to-
midnight period for day d. Since the DNI is random, the 
CSP power output is also random. We may view ( )′ dp  as 
a realization of the CSP power output r.v. 

vector ( ) 1 2[′ ′ ′
  

d d, d, , ,  . ,P P .. =P  ]′′


dd, H TP . Based on 
the analysis of the CSP behavior, we state the storage 
schedule optimization problem [13] as below with 
notations summarized in Appendix A:  

( ) ( ) ( ) =1

( ) ( )( )

{

}

 (1 )

  

  (1 )
1, 2,  ...  ,

                      

               

ρ

ρ

ρ

γ

κ β

κ η κ κ κ

η κ κ

′

′

+

′ ∆

= ∆

⋅ ⋅

⋅ 


= + 
=

∑
, , ,

, ,

( )

dH
d, h d, h

d d d he c
d dd

g

d, h d, h
d

d, h d, h d, h d, h
g g c e

d, h d
g g c

max p a

subject to

u b
h = H 

p

κ κ κ

κ ζ

, + 1,  ...  ,     (1 )κ ′+, h d, h d d d
e h = H H H c            

 

 

1(1 )( )

1, 2,  ...  , 1           

(1 )( ) 0

              

ζ η κ κ ζ

ζ η κ κ

− + − =

′ −

− + − ≥

′

d, h d, hd, h d, h+
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d

d, h d, hd, h
c c g

d

ψ

h = H

ψ

h = H

   

                                        
 

                                        
1

    

         (1 )

( (1 )
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ζ ζ ζ
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κ κ κ
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)d, hd, h
e

d, h
min max

d, h d
c,min c c,max

d, h
e,min e e,max

d, h
g,min g g,max

d

p e

f

h = H g  

h
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The objective function in (1 )a  gives the value of the 
CSP-generated energy. The equality constraint in (1 )b  
represents the relationship between the absorbed thermal 
energy and the DNI for each sub-period from sunrise to 
sunset. The equality constraints in (1c) represent the 
energy balance in the CSP for each sub-period during the 
sunrise-to-sunset period and during the sunset-to-midnight 
period, respectively. In (1 )d , the two constraints state the 
thermal energy balance in the TES.  The equality 
constraint in (1 )e  represents the relationship between 
thermal energy into power block and the net electrical 
power output. The range of the variables is given in 
(1 )f − (1 )i  together with the limiting values of these 
ranges.  
 
The solution of the storage schedule optimization problem 
is a realization of the CSP power output r.v. vector ( )d′



P , 

corresponding to ( )d



U . We can use inverse-scaled 

samples from each DNI pattern cluster R r to compute 

the corresponding realizations of ( ) 1[|d d, 
r  r ,P=′ ′

 

P  
2 ]

dd, d, H T
r r,  . ,P .. P ′′ ′

 

, the CSP power output r.v. vector 

conditioned on regime rR . We can assemble those 
realizations to construct the CSP power output sample 
space and use the values for sub-period h to estimate the 
c.d.f. and moments of  ′



d, h
rP  . 

 
To keep consistency with the midnight-to-midnight 
representation of the loads in the simulation approach, we 
construct the augmented CSP power output r.v. vector 

( ) ∈


HdP   for H sub-periods of day d in (2). Since there 
is no solar energy available before sunrise, we may view     

  Fig.4:  The inverse-scaled samples from the R clusters for the day d 
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each of the first ′− dH H  elements in ( )



dP  as an r.v. 
having value 0 associated with probability 1: 
 

( ) 1 2

1 2

[ ]

[0 0 0 ] (2)        ′′ ′ ′

=

=
   

  

d

d d, d, d, H T

d, d, d, H T

,  . ,

, ,  . ,

P , P .. P

,  ,  ...  , , P P .. P

P
  

 
The extended probabilistic simulation 
approach 
 
The probabilistic simulation approach is widely deployed 
in the evaluation of the expected energy produced by each 
unit over a specified study period, the values of the 
reliability metrics, the expected system production costs, 
the expected greenhouse gas emissions and any other 
metric of interest to measure the variable effects. In this 
section, we briefly review the conventional probabilistic 
production simulation tool and describe the steps to 
extend the production simulation with an integrated CSP 
resource. 
 
To emulate the operation of the power systems, we 
decompose the entire study period into W  non-
overlapping simulation periods and simulate 
probabilistically each period. We define and characterize 
each simulation period in a way that captures the seasonal 
characteristics and changes in the resource mix. Each 
simulation period has its own unit commitment set, 
resources characteristics and load characteristics. Let 

= {1, 2, ... , }w w | |T T  denote the index set of non-
overlapping simulation sub-periods in the simulation 
period w . For each such sub-period, we assume that the 
load and each unit’s output are constant. 
 
For a unit to generate energy to serve the load, it must be 
first scheduled and thereafter be dispatched to supply the 
loads [14].  Let {1, 2, ... , }χ χ= | |  be unit index set of 
the controllable resource mix in our study and the subset 

( )χ χ⊂w  be the committed unit index set for the 
simulation period w .  Each block of a committed unit in 

( )χ w  is dispatched in the order of its marginal price and is 
used to meet the load in period w . In this way, we 
construct the period w  loading order of committed units 
and we refer to this order as the loading list. Each 
controllable unit has its output level set by the plant 
operator, but the output is also a function of the 
availability of the unit. In our work, we model the 
availability of each controllable unit by a discrete outage 
capacity r.v.. We adopt a two-state probabilistic 
representation for each unit:  either the full capacity is 
available or the unit is totally forced out. We also assume 

that each unit is independent of every other unit and of the 
load. 
The probabilistic simulation approach makes use of the 
notion of equivalent load r.v.. We denote the load r.v.  by 



L  and use equation (3) to compute the equivalent load 
r.v. iteratively: 
 

1 0with (3)−=
    

k k kL L + Z L = L  
 

In equation (3), 


kL  represents the equivalent load r.v. 
needed to be served by the remaining units’ blocks in the 
loading list after the first 1−k  blocks are loaded and 



kZ  

represents the outage capacity r.v. of the thk  block to be 
loaded.  Then we refer to the inverted load duration curve 
(l.d.c.)   kL  as the complement of the c.d.f. of the 

equivalent load r.v. 


kL . The independence assumption of 

load and units allows us to compute   1   2, , ... , kL L L  
successively by convolution. We can make extensive use 
of the inverted l.d.c.s to evaluate the variable effects of the 
systems. 
 
Then, the most important step to extend the production 
simulation approach to the systems with the integrated 
CSP resource is to mesh the probabilistic framework of 
production simulation with the probabilistic representation 
of the CSP output, which requires careful reexamination 
of the load representation. We describe this step using the 
hourly resolution with = 168 w| |T  and 24H = , but the 

scheme is sufficiently general to allow the adoption of any 
desired granularity. In each simulation period w , we 
collect the daily load values for each day to obtain a 
subset of 24 hourly load values and construct the load r.v. 
sample space, which consists of  w| |T  hourly load 

values. To directly relate the hourly CSP generation r.v. to 
the hourly load r.v., we divide the load r.v. sample space 
into 24 subsets, with each subset containing realizations of 
the load r.v. |



hL  for each hour h. Consequently, we may 

view the sample space as a matrix with wD  rows and 24 

columns. Let (1) (2) (24)
w w w, , ... ,T T T  be the 24 subsets 

of  wT  , with each subset ( )h
wT  being a collection of 

indices of the hour h  for  the wD  days in the simulation 
period w : 
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24 ( )
                                                                                            

=1
(4)= 

h
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h
T T

 
1 2( ) ( )

                                                 1 2 (5)= ∅ ≠

h h
w w h hT T

 

 
 
 
 
Fig.5 illustrates the process of the load classification. We 
make use of the load samples in each subset to estimate 
the c.d.f. ( )





hL |F   of the load r.v conditioned on hour h. 
Since each of the 24 non-overlapping subsets has a 
uniform probability 1/24, the careful implementation of 
conditional probability allows us to restate the c.d.f. of L



 
as below: 
 

1

1

24

24

( )  

| { }

1
| (6)

24

 { } 

= { }

= { }

= { }                               

=

=

≤

≤

≤

≤

∑

∑



 













h

h

L

h

h

in every hour

hour

F Prob L

Prob L

Prob L Prob

L

h

Prob

=

   

Since the unit characteristics are uniform over the whole 
simulation period, i.e., for every hour, we can extend (6) 
to restate the c.d.f. of kL



 in the similar way:   
 

1

24

|
1

( ) ( ) (7)
24

{ }=                 
=

≤ ∑




  



 k k
h

k hL LF Prob L F=  

 

where the | ( )   




k hLF denotes the conditional probability 

of the equivalent load 


kL  for hour h. In this way, we can 
restate all the probabilistic simulation results using the 
conditional distributions with the conditioning on the hour 
h of the simulation period. 
 
We then describe the representation of the CSP resource 
impacts by making use of the load sample space 
partitioning in combination with the regime-based CSP 
power output. The uncertain CSP power output supplies 
the power systems with the remainder being served by the 
controllable resource mix. We refer to the remaining net 
load after the CSP is loaded as the “controllable load” 



C , 
which needs to be served by the controllable units.  
Assumption that the load and CSP power output r.v.s are 
independent for each hour allows us to compute the c.d.f. 

( )


 hrC | cF  of the controllable load r.v. conditioned on each 

regime and each hour by convolution.  In the similar way 
as the derivation of (6) and (7), we can restate the 
c.d.f. ( )



rCF c  of the controllable load r.v. conditioned on 

each regime: 
 

1

24

{ }

{ }

1

|

|

( ) (8)
24

( )

=

=                                      
=

≤

≤

∑









h
 h

C r

r

C

r

r|

c c regime

c in every hour reg

Prob C

Prob imC e

c

F =

F

R

R  

 
For each ( )⋅



rCF , we perform the production simulation in 

the same way as in the conventional case but the 
computation is conditioned on each regime. In this way, 
we can evaluate the figures of merit of the controllable 
units conditioned on each regime rR . Subsequently, we 
can compute the expected value of each metric of interest 
as the probability weighted average of the expected values 
conditioned on the DNI regimes. 
 
Simulation Study Results 

 
We have completed the modification of conventional 
simulation framework to incorporate the regime-based 
CSP output model into the extended probabilistic 
production simulation tool. We illustrate the added 
capabilities of the tool by describing some representative 
results from the testing work we have done. We devote 
this section to discuss the test system used in the 
simulation results and to bring into evidence the 
capabilities of the extended simulation approach to 

  Fig.5:  Process for the load classification 
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quantify the variable effects of the systems with an 
integrated CSP with TES. For these discussion purposes, 
we limit the results to a single year. 
 
We discuss two sets of case studies carried out on a 
modified RTS. In case study set I, we investigate the 
impacts of deepening CSP capacities on the ststems. In the 
case set II, we carry out the studies on the systems with an 
integrated CSP for different TES capabilities. For the test 
system, the peak load is 3,050 MW and we use the 
appropriately scaled 2011 ERCOT load data, whose 
annual peak load is 67,859MW [5]. For each controllable 
unit in the RTS resource mix, we take the unit capacity, 
the outage capacity distribution and the economics of each 
of its blocks, with their respective capacities, into 
consideration. We represent the maintenance schedule for 
each unit in line with the requirements in the RTS 
specifications. We select the location of the CSP to be in 
Texas, specifically, at Midland – 32°21’N, 102°21’W. We 
use the historical DNI measurement data from the years 
2003 to 2009 [6], [15] to identify the regimes for the 
simulation. We assume a solar tower structure for the CSP 
and the characteristics and deployment of heliostats and 
central receiver to be as specified for the system in the 
studies reported in [16] and [17]. In addition, we use the 
parameters of the TES and power block description in 
[18]. We use the Texas 2011 fuel costs and CO 2 emission 
rates [19]. For the TES schedule, we compute the 
objective function coefficients from past average hourly 
system marginal price data [5]. We summarize the two 
case study sets in Tables I and II, respectively.  
 

Table I:  Key characteristics of case study set I 
 

study case base 
case C 120 C 180 C 240 C 300 C 360 

CSP capacity (MW) 0 120 180 240 300 360 

TES capability (h) 0 6 

 
Table II:  Key characteristics of case study set II 

 

study case  T 0 T 1 T 2 T 3 T 4 T 5 T 6 

CSP capacity (MW) 120 

TES capability (h) 0 1 2 3 4 5 6 

 
For simulation purposes, we group the 52 weeks of a year 
into four seasons so as to appropriately represent the 
seasonal characteristics.  We identified from the available 
insolation data four DNI regimes rR  , r = 1, 2, … ,4, for 
each season. For the time scaling, we use J = 80 time-
scaled sub-periods to characterize the daily DNI pattern. 
Table III shows the probability associated with each 
regime for each season. We display the centroid of each 

time-scaled daily DNI regime pattern for the summer 
season in Fig.6. 
 

 
Fig.6:  Centroid of each time-scaled daily DNI regime patterns for the 
summer  
 

 
Table III:  The probability of each DNI regime at Midland, TX in 

years from 2003 to 2009 
 

regime 
season 

1S  2S  3S  4S  

R 1 0.450 0.413 0.483 0.418 

R 2 0.231 0.250 0.220 0.253 

R 3 0.165 0.185 0.154 0.176 

R 4 0.154 0.152 0.143 0.154 

 
We start out the discussion of case study set I with the 
base case for the supply system consisting only of the 
controllable resources. We present in Table IV the values 
of the reliability – the loss of load probability (LOLP) and 
the expected unserved energy (EUE), the expected 
production costs and CO 2 emissions metrics for a 
representative winter and summer weeks and for the entire 
year.  
 

Table IV:  Simulation results for base case without the CSP 
 

metric 
simulation period 

week of 
Jan. 10  16, 2011 

week of 
Jul. 25  31, 2011 entire 2011  

LOLP 1.68 10 

-6 3.40 10 

-3 1.90 10-3 

EUE (MWh) 2.01 10 

-2 71.15 2,520  
expected 

production 
costs          

(million $) 

5.15 11.3 357 

expected CO 2 
emissions 

(million ton) 
0.16 0.30 10.31 

DNI (W/m2) 

1                     20                     40                   60                80 
time-scaled sub-period 

2  R 1 R 2 

R 3 R 4 
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Next, we present in Table V the simulation results on the 
test system with an integrated 120 MW CSP (C 120). The 
implementation of the solar plant reduces the LOLP and 
EUE indices by 32.83 and 35.05 %, respectively, 
reflecting the reliability improvement in the system due to 
the CSP integration with respect to the base case results. 
Similarly, the CSP integration lowers the expected 
production costs and CO 2 emissions by 4.22 and 3.17 %, 
respectively. We display in Figs.7 and 8 the simulation 
results in case study set I in terms of the changes in each 
metric with respect to the base case. We note that the 
expected production costs and the expected CO 2 
emissions decrease essentially linearly as the CSP 
capacity increases. Such results are reasonable since every 
additional MW of CSP generation displaces the energy of 
more costly and polluting units. The CO 2 emissions of 
each unit are assumed to be linearly dependent on the unit 
production and so the lowered CO 2 emissions behave 
accordingly. We also observe the diminishing returns in 
reliability improvement. Although the integration of CSP 
with higher power capacity lowers the LOLP and the 
EUE, the reliability improvement of each successive 
increment has lower impact than the preceding increment. 

 

 
 

 
   
Fig.8:  The reductions in the expected cost and CO 2 emission indices  
  vis-à-vis the base case values for the capacity sensitivity in case set I 
 
We can see how well the extended simulation framework 
captures the seasonal characteristics from the simulation 
results of Case C 240. Table VI displays the simulation 
results for the summer conditioned on each identified 
regime together with the weighted average. The 
production simulation results differ markedly in distinct 
regimes of the summer period. For instance, the LOLP 
conditioned on regime R 4 is over twice larger than that 
conditioned on regime R 2. This is because those daily 
DNI patterns in regime R 2 represent the DNI pattern with 
higher solar energy. Thus, the simulation results clearly 
illustrate the strong dependence of reliability and 
economic impacts on the various daily DNI patterns.  

 
In Table VII, we display the simulation results for four 
seasons and the entire 2011 year. Since summer has 
relatively high energy demand, the LOLP of S2 is almost 
200 times of that of S 3 and the expected CO 2 emissions 
of S 4 is less than 50 % of that of S 2. Hence, the 
simulation results explicitly demonstrate the strong 
correlation between reliability and economic impacts of 
the integrated CSP resource and the seasonal 
characteristics of the system.  
 

 

Table V:  Simulation results for Case C 120 with a 120 MW solar tower 
 

metric 
simulation period 

week of 
Jan. 10-16, 2011 

week of 
Jul. 25  31, 2011 entire 2011 

LOLP 1.60 10 

-6 2.12 10-3 1.30 10 

-3 
EUE(MWh) 1.92 10 

-2 41.80 1.64 10 

-3 
expected 

production 
costs    

(million $) 

5.05 10.8 342 

expected CO 2  
emissions 

 (million ton) 
0.161 0.29 9.98 

 

 
 
Fig.7:  The reductions in LOLP and EUE indices vis-à-vis the base case 
values for the capacity sensitivity in case set I 

Table VI:  Seasonal simulation results for summer in Case C 240 
 

metric 
regime 

S 2 
R 1 R 2 R 3 R 4 

LOLP (10 

-4) 23.01 31.44 28.97 61.95 33.35 

EUE (10 

2 MWh) 7.00 10.95 8.79 19.99 10.66 

production 
costs (10 

8  $) 1.18 1.26 1.23 1.36 1.24 

expected  CO 2  
emissions  

(million ton) 
3.09 3.27 3.19 3.49 3.22 

                               CSP capacity (MW) 
         120                180                240               300                 360 
 

reduction (%) 

  

 

 

                               CSP capacity (MW) 
         120                180                240               300                 360 

reduction (%) 
LOLP 

EUE 

expected production costs 
expected CO 2 emissions 
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Table VII:  Seasonal simulation results for the entire year in Case C 240 

metric 
season entire 

2011 
year 

1S  2S  3S  4S  

LOLP (10 

-4) 3.61 33.35 0.17 0.11 9.38 

EUE (10 

2 MWh) 0.94 10.66 0.035 0.021 11.70 
production costs 

(108 $) 0.83 1.24 0.60 0.60 3.27 

expected CO 2 
emissions 

(million ton) 
2.47 3.22 1.96 2.01 9.66 

 
We present in Figs.9 and 10 the simulation results in case 
study set II in terms of the changes in each metric with 
respect to the base case. We can notice that the expected 
value of each metric decreases with the increasing TES 
capability since more thermal energy can be stored during 
the daytime for later use. We also observe the diminishing 
returns in the improvement of each metric. Particularly, 
when the TES capability becomes more than 3 hour, the 
change of each metric is trivial. This is because the solar 
energy of each day is not sufficient enough for the CSP to 
make full use of a TES with larger capability. 
  

 
 
Fig.9:  The reductions in LOLP and EUE indices vis-à-vis the base case 
values for the capacity sensitivity in case set II 
 

 
  
 Fig.10:  The reductions in the expected cost and CO 2 emission indices    
  vis-à-vis the base case values for the capacity sensitivity in case set II 

Those key metrics and the representative simulation 
results presented in this section provide strong evidence to 
prove that the extended simulation approach is effectively 
capable to capture the time-varying characteristics of the 
CSP resource and quantify its impacts on the systems. 
 
Conclusion 
 
In this paper, we present the development of an extended 
simulation approach to assess the variable effect impacts 
of power systems with integrated CSP resources over 
longer-term periods. The ability to quantify the impacts of 
CSP resources on the economics of electricity supply, the 
emission outputs and the system reliability results in an 
effective methodology for planning, investment decision, 
regulatory filing, and policy analysis applications. The 
representative results discussed illustrate the ability of the 
approach to answer a wide array of what if questions on 
CSP integration for realistic power systems. Our results 
are selected from the extensive studies we carried out to 
quantify the impacts of CSP resource integration on the 
system variable effects for a wide variety of parametric 
studies. Our work provides valuable insights into the role 
that CSP resources can play in the effective harnessing of 
solar energy and the efficient deployment of TES in the 
integration of such resources. The extended simulation 
approach, incorporating the representation of integrated 
CSP resources, constitutes a significant improvement in 
the capability to emulate systems with integrated 
uncertain, time-varying, and intermittent solar resources 
with TES.  
 
The proposed approach is a good basis to develop a 
comprehensive simulation framework to investigate the 
variable effects of systems with the integrated CSP and 
wind resources at multiple sites. In addition, we will 
explore the representation of parabolic trough technology 
and assess the influence of the integrated CSP resources 
on the systems with location diversity. The advantages of 
the regime-based characterization of DNI to capture both 
the seasonal and diurnal variability of variable energy 
resources can be exploited in other areas. We will report 
on such efforts in future publications. 
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Appendix A: Nomenclature 
 
D  number of days for DNI data collection 

dM  number of non-overlapping sub-periods over the        
sunrise-to-sunset period of day d  

d, ma  DNI observed for the sub-period m  of day d   
( )da  DNI vector 1 2[ ]

dd, d, d, M T, ,  . ,a a .. a for dM  
sub-periods over the sunrise-to-sunset period of 
day d  

(d )



A  DNI r.v. vector [ ]
dd, 1 d, 2 d, M T, ,  . ,A A .. A

  

 for 
dM  sub-periods over the sunrise-to-sunset 

period of day d  
J  number  of  time-scaled  sub-periods  over the 

sunrise-to-sunset period  
d, jy  DNI observed for the time-scaled sub-period j  

of day d   
( )dy     DNI vector 1 2[ ]d, d, d, J T, ,  . ,y y .. y  for J time-

scaled sub-periods over the sunrise-to-sunset 
period of day d   

R r  DNI pattern cluster r , where 1, 2......r = R  

rπ̂  estimated probability of R r  
rR  DNI pattern regime, where 1, 2......r = R  
j
rY


 DNI r.v. for the time-scaled sub-period j of day 

d  conditioned on regime rR  
dH  number of non-overlapping inverse-scaled sub-  

periods over the sunrise-to-sunset period of day d 
d, hu       DNI observed for the inverse-scaled sub-period 

h  of day d   
( )du  DNI vector 1 2[ ]

dd, d, d, H T, ,  . ,u u .. u  for dH  
inverse-scaled sub-periods over the sunrise-to-
sunset period of day d  



d, h
rU  DNI r.v. conditioned on rR

 
for the inverse-

scaled sub-period h  of day d  
( )d

r


U
  

  DNI r.v. vector 1 2[ d, d, , ,U U
 

 ]
dd, H T . ,.. U



 for 
dH  inverse-scaled sub-periods over the sunrise-

to-sunset period of day d 
′ dH  number of non-overlapping sub-periods over the 

sunrise-to-midnight period 
′ d, hp  CSP power output in the sub-period h  of day d  

( )′ dp  CSP power output vector 1 2[ ′ ′d, d, , ,  . ,p p ..   

]′′
dd, H Tp  for dH ′  sub-periods over the 

sunrise-to-midnight period of day d  
∆  duration of one sub-period in the TES schedule   

optimization problem 
d, h
ρκ      absorbed thermal energy by the CSP in the sub-

period h  of day d  
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( )d
ρκ  absorbed thermal energy vector 1 2[ d, d,, ,  . ,.. ρ ρκ κ  

]
dd, H T

ρκ  for dH  sub-periods over the sunrise-
to-sunrise period of day d  

( )β ⋅  nonlinear mapping of DNI into absorbed thermal 
energy flow rate 

d, hγ      objective function coefficient from past average 
hourly system marginal price data for the sub-
period h  of day d  

d, h
cκ       thermal energy charged into the TES in the sub-

period h  of day d   
( )d
cκ     charging thermal energy vector 1[ d, 

c ,κ  
2 ]

dd, d, H T
c c,  . ,.. κ κ ′  for dH ′  sub-periods over 

the sunrise-to-midnight period of day d  
cη           charging efficiency of TES 
d, h
gκ       thermal energy discharged from TES in the sub-

period h  of day d  
( )d
gκ     discharging thermal energy vector 1[ d, 

g ,κ  

2 ]
dd, d, H T

g g,  . ,.. κ κ ′  for dH ′  sub-periods over 

the sunrise-to-midnight period of day d  
gη           discharging efficiency of TES 
d, h
eκ       total  thermal  energy  delivered  from  the solar 

field and TES into the power block of CSP in the 
sub-period h  of day d  

( )d
eκ      vector representation 1 2[ d, d,

e e, ,  . ,.. κ κ  

]
dd, H T

eκ ′ of thermal energy into the power block 

for dH ′  sub-periods over the sunrise-to-
midnight period of day d  

ψ           thermal energy loss rate in the TES 
d, hζ       thermal energy stored in TES in the sub-period 

h  of day d  
( )dζ   thermal energy stored in TES vector 

1 2[ ]
dd, d, d, H T, ,  . ,.. ζ ζ ζ ′  for dH ′  sub-

periods over the sunrise-to-midnight period of 
day d  

ρ ρκ κ,,max ,min    limit values of  ρκ d, h  

κ κ,g,max g,min     limit values of  κ d, h
g  

κ κ,e,max e,min      limit values of  d, h
eκ  

maxζ  thermal storage capacity of the CSP 

minζ  minimum thermal energy stored in the TES 
(α ⋅)      nonlinear mapping of thermal energy flow rate 

into net electrical power output  
′


d, hP      CSP power output r.v. in the sub-period h of day 
d 

( )′


dP   CSP power output r.v. vector 1 2[ d, d, , ,  P P
 

 

]
dd, H T. ,.. P ′



 for dH ′  sub-periods over the 
sunrise-to-midnight period of day d  

′


d, h
rP      CSP power output r.v. for the sub-period h  of 

day d  conditioned on regime rR  
( )′



d
rP   CSP power output r.v. vector 1 2[ d, d, 

 r  r, ,P P| |
 

 

]
dd, H T

 r . ,.. P |′



 for dH ′  sub-periods over the 
sunrise-to-midnight period of day d conditioned 
on regime rR  

( )d



P    augmented CSP power output r.v. vector  
1 2[ ]

  

d, d, d, H T, ,  . ,P P .. P  over the midnight-to-
midnight period of day d  

W          number of simulation periods in the whole study 
period 

w           simulation period 

wD         number of days in the simulation period w  

wT          sub-period index set of simulation period w  
( )h

wT      subset of wT  , containing the indices of the hour 

h  of the wD days in simulation period w  



kL         equivalent load r.v. after the first 1k −  blocks in 
loading priority list are loaded 

|k hL


      equivalent load r.v. conditioned on hour h after 

the first 1k −  blocks in loading priority list are 
loaded  

( )
 kLF




  
c.d.f. of the equivalent load r.v. 



kL  

| ( )
k hLF


  c.d.f. of the hourly equivalent load r.v. |k hL


 



kZ          outage capacity r.v. of the thk  block 
C


           controllable load r.v. 



rC          controllable load r.v. conditioned on regime rR  

( )⋅


rCF   c.d.f. of the controllable load r.v. 


rC  
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