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Abstract

This paper deals with the development of an efficient iterative
method to solve the chance-constrained generation expansion
planning (GEP) problem. Reliability in an economic manner
is the main criterion when addressing GEP. The algorithm
proposed here minimizes the cost of achieving the required
reliability. Computational results based on the IEEE 30- and
118-bus test systems are presented. The proposed method
decreases the cost in comparison to existing methods for the
same reliability level.

Introduction

Power systems currently face various sources of uncertainty
such as the integration of intermittent renewable energy
sources, increased demand participation, and uncertain load
growth. This leads to the need for improved stochastic mod-
elling in the control and operation of power systems.

In vertically integrated power systems, the main objective of
the utility planners is to provide reliable power to consumers.
Commissioning a new power generation unit is both a time-
and cost-intensive task [1] and hence it forces planners to make
economic and reliable decisions well ahead of time. In GEP
one seeks to determine the number and size of new units to
be installed so that the future demand is met at minimum
cost. Most of the literature either does not consider uncertainty
as a criterion or considers only a deterministic approximate
formulation of it. The randomness of the uncertainties can be
modelled using chance-constrained programming (CCP) [2].

This paper reviews some relevant earlier work,provides an
outline of the more common chance-constrained version of
the GEP problem, presents the proposed CCP-based model and
solution algorithm, and presents and discusses computational
results on two IEEE test systems.

Background

The GEP problem is well-known in power systems planning
and it has been addressed by many earlier papers, for example
[3], [4], [5], [6], [7]. A review of optimization methods for
utility planning is given in [8]. A deterministic formulation

of GEP as a linear programming problem was used in [3]
to minimize multiple objectives: cost, emissions, and fuel
price risk. The need to include uncertainty in the formulation
motivated additional research including the following works.
The GEP problem with uncertain demand is formulated in
[4]. In [9] the GEP is modelled using a Markov chain and
the resulting problem is solved using stochastic dynamic
programming. A two-stage stochastic programming model for
generation and transmission expansion planning was discussed
in [5] where the problem formulation included a risk factor
in the objective function. The solution method was based on
the minimum variance approach [10] which is a well-known
approach to minimize the risk in an investment project. The
GEP problem in a market-based environment was discussed
in [11].

The concept of modelling uncertainty using probabilistic
constraints was introduced in [2], and methods for finding
deterministic equivalents of the probabilistic constraints were
discussed in [12]. A CCP model for the unit commitment
problems was proposed in [13], and one such model for the
transmission expansion problem with wind and load uncertain-
ties was discussed in [14]. The probability density function
of the wind-farm generation is determined and the resultant
CCP problem is solved using a genetic algorithm. Stochastic
unit commitment was solved in [13] by converting the joint
chance constraints into an equivalent deterministic form. An
application of CCP to the GEP problem and the benefit of
stating reliability criteria using a probability measure versus
deterministic ones was presented in [7]. A modified algorithm
for solving the probability measure in CCP in fewer iterations
was discussed and applied to GEP in [6]. An algorithm using
CCP and risk allocation was applied to dynamic systems and
its effectiveness were discussed in [15] and [16].

In this paper, the GEP problem for vertically integrated power
systems is addressed using CCP. The uncertainty in the load
growth is modelled using probabilistic power flow equations.
The advantage of using CCP is the ability to use joint prob-
abilistic constraints, that guarantee a prescribed probability
level of being satisfied at the optimal solution, unlike when
expected value functions are used. The resulting problem is a
mixed-integer joint-chance-constrained problem. An iterative
solution procedure that suitably weights the importance of the
critical buses in the system is presented and used to solve
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the deterministic equivalent of the joint-chance-constrained
problem.

This work differs from [3] because the load growth uncertainty
is considered. It is also different from [14] and [5] in the
formulation of the problem and the solution procedure; indeed
[14] solved the chance-constrained transmission expansion
problem with a genetic algorithm whereas [5] used two-stage
stochastic programming instead of CCP to solve the generation
and transmission expansion problem. Finally, while [6] and
[13] solve the deterministic equivalent of the CCP formulation
using an iterative procedure, the main contribution of this work
is an improved iterative algorithm that dynamically adjusts the
probabilistic constraints on the critical buses contributing to
the failure. This dynamic adjustement can lead to lower-cost
solutions compared to the earlier approaches.

Problem Formulation with Uncertainty

In GEP the variables of interest are the number and sizes of
new generation units to be installed. The generation expansion
problem can be mathematically formulated as follows [6]:

min

nb∑
i=1

wiCbn +

nb∑
i=1

Cpnipngi +

nb∑
i=1

Cpeipegi (1a)

pngi + pegi − psi = pli i = 1...nb (1b)

psi =
∑
j

−bij(δi − δj) i = 1...nb (1c)

pegmin ≤ pegi ≤ pegmax i = 1...nb (1d)
wipngmin ≤ pngi ≤ wipngmax i = 1...nb (1e)

wi = {0, 1} (1f)

where
Cbn, Cpn are the investment and production cost of new units
Cpe are the production costs of existing units
png, peg are the active power levels of new and existing units
pli is the load connected to bus i
psi is the net power flow in all the lines connected to bus i
δi is the voltage angle at bus i
bij is the susceptance of the line
nb is the number of buses in the system
wi is the binary decision variable for new generation at bus i.

In the above formulation (1a) represents the total cost incurred
by the expansion model, (1b) is the supply-demand constraint,
(1c) is a linearized model of the power flow in all the lines
connected to bus i, (1d) and (1e) are the minimum and
maximum production limits on existing and new units, and wi
is equal to 1 if a new unit is installed at bus i, and 0 otherwise.
The resulting optimziation problem is a mixed-integer linear
programming (MILP) problem.

The loading levels pli at the buses indicate the estimated
average value of the load. As the actual load may be above
or below this average value, a deterministic solution that is
feasible for the average value may or may not be feasible for
other realizations of the load. The CCP approach models this

uncertainty using a constraint requiring that feasibility has to
hold with a user-defined probability level α. Thus the power
flow equations (1b) are replaced by the probabilistic constraint

Pr(

nb⋂
i=1

(pngi + pegi − psi ≥ pli)) ≥ α (2)

Equation (2), representing the intersection of nb random
events, is a joint probabilistic constraint that is difficult to solve
as it involves the computation of a multi-dimensional Gaussian
integral. It cannot be converted to an equivalent deterministic
form directly but [13] and [7] suggested ways to convert these
joint chance constraints into an equivalent deterministic form.

Let us consider the following equivalent constraint to (2) that
follows from the fact that sum of the probabilities of an event
and of its complementary event equals one:

Pr

{
nb⋃
i=1

(pngi + pegi − psi ≥ pli)c
}
≤ 1− α. (3)

A sufficient condition for equation (3) to hold is

Pr {(pngi + pegi − psi ≥ pli)c} ≤
1− α
nb

, (4)

and therefore the probabilistic power flow equations can be
written as

Pr {pngi + pegi − psi ≥ pli} ≥ 1− 1− α
nb

. (5)

Equation (5) is the approximate joint probabilistic constraint
for (2). If the distribution of the random variable is known,
equation (5) can be converted to an equivalent deterministic
form. Since power system loads can be assumed to follow a
normal distribution,[17] the quantile of the right hand side of
equation (5) can be expressed in the form:

Pr

{
pngi + pegi − psi − µfi

σfi
≥ pli − µfi

σfi

}
≥ 1− 1− α

nb
(6)

where µfi and σfi are respectively the mean and standard
deviation of the load distribution, and hence the term pli−µfi

σfi

is the standard normal load variable with zero mean and unit
variance. Thus the deterministic form of the constraint is

pngi + pegi − psi − µfi
σfi

= Zα (7)

or equivalently

pngi + pegi − psi = µfi + σfiZα (8)

where Zα is the inverse cumulative distribution of 1− 1−α
nb at

each bus.

The Uniform Z-Update Algorithm

Given the desired probability level α, the algorithm for solving
the GEP problem using the formulation described above is:

1) Compute an optimal set of new generations by solving the
MILP with objective function (1a) and constraints (8) and
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(1c)-(1f); in other words the constraint (1b) is replaced by
the approximate deterministic equivalent (8).

2) Use a Monte Carlo simulation to estimate the probability
achieved with the computed set of new generations by
solving an optimal power flow (OPF) with the new set of
generation units for a large number of randomly generated
load scenarios. Here, wi is not a variable and is fixed with
the values from step 1) and there is no investment cost term
in the objective function. The number of feasible cases
divided by the total number of scenarios gives the estimate
of the probability.

3) If the estimated probability is not satisfactory, then the Z
value is updated and the process is repeated untill the target
probability is achieved.

The update of the Z value implies a change in the load
conditions pli and is likely to have a significant impact on
the optimal new generation decisions. The Z update method
proposed in [13] is based on the interpolation of the univariate
and multivariate variables and the false position method [18].
The GEP problem is initially solved twice with values Zh
and Zl that are chosen to correspond to probabilities higher
ph and lower pl than the desired probability α respectively.
These probabilities are converted to the corresponding uni-
variate space Z-equivalents Z1 and Z2 using the probability
distribution function of the random variable. Based on these
univariate Z and multivariate probability values, Zα is updated
for the next iteration using the formula:

Zj+1
α = Zl +

(
Zα − Z2

Z1 − Z2
(Zh − Zl)

)
. (9)

The iterative algorithm basically tries to shrink the interval
[Zh, Zl]. We refer to it as the uniform Z-update algorithm
because the same Z value is used to update the constraint (8)
for every bus.

The Proposed Modified Z-Update Algorithm

The main drawback of the uniform update method is that
same Z value is used for all the constraints. The algorithm
updates the Z values at all the constraints, by shrinking the
interval’s bounds according to the target probability. Since
the constraints contributing to the failure are not identfied as
such,the same value of Z is applied to all the buses,regardless
of the impact or role of individual buses on system stability.

The following modified algorithm is proposed to address this
drawback. Instead of updating all the bus constraints with the
same Z value, i.e., instead of changing the loading conditions
equally at all the buses, we propose to update the loading
conditions based on the contribution of each bus to the failure.
This means that more emphasis is given to the critical buses.
Such a strategic allocation of the risk can play a significant
role in reducing the cost of expansion.

The outline of the proposed algorithm is similar to that of
the uniform Z-update algorithm. The main difference is the
identification of the critical buses and the updating of the Z

value independently for each bus. Given the desired probability
level α, the steps of the algorithm are:

1) Solve the expansion problem twice, once with each of two
values of Zh and Zl that are respectively higher and lower
than Zα.

2) The probability achieved with each set of new generations
computed in step 1) is determined by solving an OPF for
various scenarios of load generated using Monte Carlo
simulation. The OPF formulation consists of equations
(1a) to (1f) but with the values wi fixed according to
the solutions computed in step 1); hence the investment
term in (1a) and the constraint (1f) are removed. Let the
probabilities of success be Ph and Pl for Zh and Zl
respectively.

3) Infeasible cases of the OPF imply that there is not enough
generation at one or more buses to meet the load, or not
enough transfer capacity in the transmission lines. These
buses are the critical buses of the system. To identify them,
a positive slack variable for each bus and a corresponding
penalty are introduced in the constraints and the objective
function respectively:

min

nb∑
i=1

Cpnipngi +

nb∑
i=1

Cpeipegi +

nb∑
i=1

Cpensi (10)

pngi + pegi − psi = pli − si i = 1...nb (11)
si ≥ 0 i = 1...nb (12)

where Cpen is the penalty for the slack variables in the
objective function. Equations (10)-(12) are the modified
objective function and constraints that replace (1a)-(1b)
for the infeasible cases of the OPF.

The slack variables play the role of reducing the load at
particular buses so as to make the OPF feasible. Thus
these variables identify the critical buses in the system
as they are positive only for those buses responsible for
failure. The value of Cpen is chosen such that the slack
variables are positive only if there is no other alternative
to make the OPF feasible. Thus the magnitude size of
Cpen must be relatively high compared to the other costs
in the objective function.

4) The multivariate probability values Ph and Pl are converted
to their univaritate equivalents Z1 and Z2 respectively.

5) Using these values, Ziα for bus i is updated using

Ziα = Zl +

(
Zα − Z2

Z1 − Z2
(Zh − Zl)

)
∗
( s̄i
ŝ

)
(13)

where s̄i is the sum of the slack variables for bus i over
all the scenarios, and ŝ = max

i=1,...,nb
s̄i.

The slack ratio s̄i
ŝ determines the step size for incrementing

the Z value for each bus i. The slack ratio at the non-
critical buses is zero so for these buses the Z value
remains equal to Zl. At the critical buses, the Zα value is
incremented depending on the relative size of the failure
rate. In particular, for a bus i with maximum failure rate
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s̄i = ŝ, the slack ratio equals one and the change in Z is
the maximum.

6) The GEP problem is solved with the updated Ziα, then the
OPF is solved to determine the probability Pfeas of the
new solution and the corresponding (Znew) is calculated.

7) If | Pfeas−α |≤ 4α then the algorithm terminates. Here,
4α is a small tolerance allowed in the target probability.
Whenever Pfeas > α ± 4α, i.e the tolerance is not
satisfied, the false position method [18] is used to choose
the new lower and higher values of Z:

a) If Znew < Ziα then Zl and Z2 are replaced with the
new Ziα and Znew respectively.

b) If Znew > Ziα then Zh and Z1 are replaced with the
new Ziα and Znew respectively.

8) The process is repeated until the target probability is
reached.

Thus in this method, Z is updated in small steps given
by a combination of both the interpolation of univariate,
multivariate values and the slack ratio for each bus. Thus
the interpolation is not only based on the target probability
and the interval bounds but also a function of the slack
ratio which gives information about the relative importance
of each constraint. The algorithm assigns a lower Z value at
all the non-critical constraints. Hence the loading conditions
are updated in a strategic way and total cost is reduced as
demonstrated by the computational results in the next section.

Computational Results

The proposed algorithm is applied to the IEEE 30-bus and
IEEE 118-bus systems [19] and simulation results are pre-
sented and discussed below. The base case loading levels are
the same as given in the test system. The IEEE 30-bus system
has 30 buses with 41 branches and 6 generator buses. The
existing load in the system is 283.4 MW and total existing
generation is 335 MW. Reserve capacity of 5% is added to
the load and a load growth of 3% per year is assumed. In
addition to this, uncertainty in the load growth as a function
of confidence level as given by equation (8) is considered. The
uncertainty is modelled as a normal distribution satisfying the
three standard deviation criterion 3µfi = 0.25σfi where µfi
and σfi are the mean and standard deviation of the normalized
load growth. The IEEE 118-bus system has 118 buses with 186
branches and 41 generators. The existing load in the system
is 3668 MW and the total existing generation is 5804 MW. A
5% reserve capacity is added to the load and load growth is
assumed to be 40 % per year.

The simulation uses the system configuration, transmission
line characteristics, generators capacity limits and transmission
line flow limits as given in the test system. The installation cost
for a new unit is $26,000/MW [20] and the cost of production
for both existing and new generation units are taken as
45$/MWh [20]. The weight of the slack variable Cpen should
be relatively higher than both the above costs and is taken as

$400,000 in the simulations. For the Monte Carlo simulation
1000 samples of normally distributed demand are used. There
is a small boundary of ±0.5% allowed for the probability
(Pfeas) at the end of the iterative algorithm. The optimization
problems are mixed-integer non-linear problems and were
solved using the BONMIN [21] solver via GAMS [22]. The
solver is suitable for mixed integer non-linear programming
problems. The simulations were verified for various confidence
levels. The computational results show the effect of confidence
level in the GEP and the cost difference between the uniform
and modified Z-update methods.

Both test systems had sufficient transmission line capacity
for the increased load growth. To show the importance of
transmission line limits, the line limits of the 30-bus system
were modified as follows. The transfer capacity of the line
connecting buses 5 and 7 was reduced to 0.45 from 0.7 and
the capacity of the line between buses 6 and 8 was reduced
to 0.28 from 0.32. The results for the 30 bus system were
computed with these modified line limits.

Figures 1 and 2 show the total cost functions of the GEP
problem for the two systems using the two different methods of
Z-Update. The cost shown includes the installation cost for the
new unit and also the operation costs for the new and existing
generation. It can be seen that the total cost increases with
increasing confidence level. Through this method, users can
know the increase in cost incurred by increasing the reliability
and thereby inform the user on the choice of the confidence
level required. It is clear from Figures 1 and 2 that the new
method of Z-update consistently brings down the total cost.

Fig. 1. Comparison of Cost for the IEEE-30 bus test system

Figures 3 and 4 show the variation in Z-values between the
two methods for the two test systems. These are the values
of Z at the end of the iteration. These figures show how the
proposed algorithm focuses on increasing loads only on the
critical buses: all the non-critical buses are maintained at Zl
and the critical buses are incremented to achieve the target
probability. This difference allows the algorithm to compute
lower-cost optimal solutions for the same reliability level.

Tables I and II show the amount of new generation dis-
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Fig. 2. Comparison of Cost for the IEEE-118 bus test system

Fig. 3. Comparison of Z-values for the IEEE 30-bus system for 92% target
probability

Fig. 4. Comparison of Z-values for the IEEE 118-bus system for 92% target
probability

patched for the uncertain load growth corresponding to various
confidence levels using the proposed algorithm. Observe that
at termination Pfeas lies within the interval of acceptable
probability α± 0.5%.

The effect of the modified line limits in the 30-bus system
is seen from the dispatch of existing generation in Tables I

TABLE I
RESULTS OF GEP FOR THE IEEE 30-BUS TEST SYSTEM

Target
probability (α) Demand

Existing
Unit

New
Unit

Cost
(∗106$) Pfeas

0.90 3.3033 3.2640 0.0393 1.3124 0.8950
0.91 3.3162 3.2644 0.0518 1.3207 0.9070
0.92 3.3299 3.2649 0.0649 1.3295 0.9240
0.93 3.3666 3.2657 0.1008 1.3533 0.9300
0.94 3.3858 3.2643 0.1215 1.3663 0.9420
0.95 3.3860 3.2642 0.1218 1.3664 0.9460

TABLE II
RESULTS OF GEP FOR THE IEEE 118-BUS TEST SYSTEM

Target
probability (α) Demand

Existing
Unit

New
Unit

Cost
(∗107$) Pfeas

0.90 59.0179 58.04 0.9773 2.3519 0.8990
0.91 59.2876 58.04 1.2476 2.3696 0.9080
0.92 59.5704 58.04 1.5313 2.3881 0.9210
0.93 59.6585 58.04 1.6185 2.3938 0.9260
0.94 60.2528 58.04 2.2128 2.4327 0.9450
0.95 60.5466 58.04 2.5066 2.4519 0.9460

and II. In Table II, corresponding to the 118-bus system, the
existing units are always dispatched to their maximum whereas
in the 30-bus system, they are dispatched less because of the
modified line limits. The dispatch from existing units keeps
increasing up to a confidence level of 93% after which it starts
decreasing due to the line overloads.

Conclusion

A chance-constrained GEP formulation with load uncertainties
was considered and a modified algorithm for solving its
deterministic equivalent was developed. Slack variables were
introduced in the problem formulation to identify critical buses
of the system and risk allocations are updated only for these
buses. The effectiveness of the new method is demonstrated
by computational results using the IEEE 30- and 118-bus
test systems. The developed algorithm provides lower total
expansion costs than the previous methods.

References

[1] R S Pindyck, “Irreversibility, uncertainty, and investment,” Tech. Rep.,
National Bureau of Economic Research, 1991.

[2] A.Charnes and W.W. Cooper, “Chance-constrained programming,”
Management science, vol. 6, no. 1, pp. 73–79, 1959.

[3] J.L.C Meza, M.B. Yildirim, and A.S.M Masud, “A model for the
multiperiod multiobjective power generation expansion problem,” Power
Systems, IEEE Transactions on, vol. 22, no. 2, pp. 871–878, 2007.

[4] O J de Bisthoven, P Schuchewytsch, and Y Smeers, “Power generation
planning with uncertain demand,” Numerical Techniques in Stochastic
Optimization, IIASA (to appear), vol. 128, 1988.
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