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Abstract

The deepening penetration of renewable resources, such as
wind and photovoltaic solar, has introduced additional uncer-
tainty into power system operation and control. This added
uncertainty, together with the conventional sources of un-
certainty, the loads and the availability of resources and
transmission assets, makes clear the limitations of the con-
ventional deterministic power flow in power system analysis
and security assessment applications. Therefore, the explicit
consideration of uncertainty requires the deployment of prob-
abilistic approaches so as to provide the ability to manage
the wide spectrum of all possible values of the input and
state variables. In this paper, we make use of cumulant-
based probabilistic power flow methodology to account for
correlations among the input random variables. Extensive
testing indicates good performance of probabilistic power flow.
We illustrate application of the probabilistic power flow on the
14-bus IEEE test system and present a comparison with the
result obtained by the computationally more demanding Monte
Carlo approach. The probabilistic power flow results provide
valuable information for power system analysis and security
assessment and, in particular, provide insights into issues
associated with line overloading, over-/under-voltage, and the
critical ramping requirements from conventional generators in
system with deep penetration of highly variable resources,
such as wind farms.

Introduction

The conventional deterministic power flow (DPF) is the most
widely used tool in power system analysis, operations, plan-
ning and control. DPF uses the specified values of power gen-
eration and load, and the parameters of the network topology
to compute system steady-state operating conditions without
taking into account any sources of uncertainty affecting the
power system. The deepening penetration of renewable energy
sources (RES), such as wind and photovoltaic solar, has
introduced additional uncertainty into power system operation
and control. This added uncertainty along with the conven-
tional sources of uncertainty, the loads and the availability of
resources and transmission assets, makes clear the limitations
of the conventional DPF in power system analysis and security
assessment applications. In order to deal with the above

problems, a probabilistic approach needs to be used, where
we explicitly represent the sources of uncertainty embedded
by random variables (r.v.s). This approach is referred to as
probabilistic power flow (PPF).

The early contribution in the PPF area was the scheme pub-
lished in 1974 [1]. A general classification of PPF procedures
is as follows: numerical methods and analytical methods.
Monte Carlo Simulation (MCS) is a systematic methodology
for the emulation of events under uncertainty [2]. The MCS
for power flow studies under uncertainty uses multiple DPF
solutions for the sampled values of the realizations of the r.v.s
that are used to represent the various sources of uncertainty.
The accuracy of the results is one of the advantages of this
method and mostly depends on the number of samples [3], [4].
However, MCS is usually very computationally intensive. The
basic idea of the analytical approach is to apply a defined
algorithm, i.e., point estimate methods [5], [6], cumulant
techniques [7], [8], or convolution techniques [9], [10] with
probability density functions (p.d.f.s) and/or cumulative dis-
tribution functions (c.d.f.s) of r.v.s of inputs so that p.d.f.s
and c.d.f.s of r.v.s of system states and line flows can be
obtained. Point estimate methods are based on approximations:
input variables are decomposed into a series of values and
corresponding weights, and then the moments of the output
variables of interest are computed as a function of the inputs.
The cumulant methods adopt the properties of moments and
cumulants, based on the probability distributions of input r.v.s
and linearized power flow equations, while the convolution
methods convolve all r.v.s. The conventional convolution
technique or fast Fourier transform method requires more
storage and computation time than cumulant methods.

In this paper, a cumulant-based PPF methodology is adopted.
Correlation among nodal power injections from wind power
generation and among loads is explicitly represented. In this
way, the dependence of load/RES production forecast errors
(e.g., due to weather forecast errors) over geographic areas can
be taken into account. Also, the steady-state behaviour of the
frequency regulation of conventional generation is included in
the model. Hence, the control law of the generating units (e.g.,
secondary frequency regulation/AGC or tertiary frequency
control, etc.) may be considered. In addition, PPF provides
a complete spectrum of all possible values of generator power
outputs, bus voltages, power flows, etc., in terms of p.d.f.s and
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c.d.f.s so that they can be used for power system analysis and
security assessment [11] and, in particular, issues associated
with the critical ramping requirements from conventional
generators, line overloading, and over-/under-voltage can be
assessed with the eventual aim of planning control measures.

Probabilistic Power Flow with Distributed Slack
Bus Model

Distributed Slack Bus Model

Traditionally, the slack bus is known in power flow compu-
tation as the bus which is responsible for balancing power
mismatch in power system. However, in modern power system
where the uncertainty of bus power injections is significant,
for example, due to the stochastic nature of loads and wind
power resources, the slack bus injection reflects the combi-
nation of uncertainty of all injections too. Nevertheless, in
real power system operation, the actual power mismatch is
usually shared by many generators, according to the frequency
control. Consequently, the power output of all generators
under frequency control will be affected by the uncertainty.
Therefore, for such generators, it becomes difficult to assess
both reserve margins and ramping constraint under uncertainty.
The proposed approach can provide the useful information for
dealing with this issue and for assessing power system security
such as line overloading and over-/under-voltage as well.

The conventional DPF is based on the concept of a single slack
bus due to the lack of prior knowledge of the losses in power
system. In addition, this works well as far as the injections are
known with good confidence. The slack bus is a mathematical
model to take into account a priori uncertainty on losses; in the
actual operation, however, the loading of generators is defined
by the frequency control model. For example, in the very short-
term, any imbalance is compensated by the droops of primary
frequency regulators; in a longer term the same occurs for
the participation factors of secondary frequency control (or
AGC) and in an event longer term it can be done for tertiary
control. In any case, any mismatch, or any uncertainty, can be
allocated to some controlling generators, according to some
participation factors αi. The DPF model can be enhanced to
take this into account, by the distributed slack model. With
the distributed slack bus model (DSBM), any power mismatch
(either due to uncertainty or to losses) can be assigned to a
set of generating units participating in a real power allocation
process, thus reflecting the actual operation in power system.

Let us assume that there are n buses in the power system;
in the DSBM there is no more a ’slack bus’, so 1 to m are
the generator buses that take care of the overall real power
imbalance in power system ∆PIB , while buses from m + 1
to n (including load buses and remaining generator buses) are
not involved in the imbalance sharing. In DSBM, modification
in the formulation is only relevant to the real power part of
the Jacobian matrix as follows [12], [13]
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Each element of the first column of the modified Jacobian
matrix is the participation factor of each generator in the real
power allocation process and zero otherwise [12]:

∂Pi

∂PIB
= αi (2)

m∑
i

αi = 1 (3)

An iterative process is then adopted to solve the real power
flow equations (1) and after each iteration, the voltage magni-
tudes, voltage angles and also the imbalance are updated (by
solving the reactive subproblem according to the conventional
model).

For a convergent power flow, the amount of real power
imbalance in power system is distributed among generators
based on participation factors αi so that their real power
outputs can be represented as

PGi = PGi0 + αi ∆IB (4)

P low
Gi ≤ PGi ≤ P up

Gi (5)

where:
• PGi is the real power output of generators connected

to bus i,
• PGi0 is the scheduled real power output of generating

units connected to bus i,
• ∆IB is the total real power imbalance at solution

point (the difference between the schedules of gen-
erators and their outputs computed by a DPF with
DSBM),

• P up
Gi and P low

Gi are the upper and lower limits of the
ith real power generation, respectively.

The participation factors in the general model above can be
defined depending on the considered time frame. In particular,
taking the secondary frequency regulation time frame as an
example, the participation factors can be calculated as
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αi =
agc i

agc Σ
(6)

agc Σ =
m∑
i

agc i (7)

PGi + agcmax
i ≤ P max

Gi (8)

PGi − agcmin
i ≥ P min

Gi (9)

where:
• agc Σ is total system AGC requirement according to

secondary frequency regulation (MW),
• agc i is the accepted AGC quantity by generating

units at bus i,
• agcmax

i ≥ 0 and agcmin
i ≥ 0 are the regulation

limits (the capacity limits due to unit characteristics),
• P max

Gi is the maximum real power generation (phys-
ical limit),

• P min
Gi is the minimum real power generation.

Distributed Slack Probabilistic Power Flow

The basic power flow equations can be expressed in general
in a matrix form as [14], [15]:

w = g(x) (10)

z = h(x) (11)

where:
• w is the vector of nodal injected powers,
• x is the vector of state variables,
• z is the vector of line power flows,

and
• g(x) are the power flow equations,
• h(x) are the functions to compute line power flows.

With DSBM [12], equation (10) can be rewritten as:

w = g(

[
PIB

x

]
) (12)

It should be noted that vector w in (12) includes the power
injections of all buses in the power system while in (10), power
injections at the slack bus is not included.

The solution is obtained by solving a DPF for DSBM. Using
Taylor series expansion to linearize the above equations around
the solution point gives [14]

∆w =
[
J0

] [∆IB
∆x

]
(13)

so

[
∆IB
∆x

]
=

[
S0

]
∆w (14)

∆z =
[
T0

]
∆w (15)

where [S0] is the inverse of modified Jacobian matrix [J0]
and [T0] is the sensitivity matrix of power flows with respect
to nodal power injections at the solution point.

To solve the PPF, w, x, z elements and IB are assumed as
r.v.s. From relationships in (14) and (15), a cumulant-based
PPF [8], [14], [15] can be adopted. Moreover, for taking into
account the correlation among input r.v.s, the joint cumulant
described in [15] is used.

If r.v. y is a linear combination of r r.v.s ui, i = 1, . . . , r:

y = a1u1 + a2u2 + · · ·+ arur (16)

the cumulants of y can be calculated from the cumulants of
ui as follows [15]:
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r∑
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r∑
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(1)
i
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...

(17)

where:
• E(·) is the mathematical expectation operator,
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• y(k) and u
(k)
i are the kth order cumulant of y and

ui, respectively,
• u

(i(ki),j(kj),l(kl),... )
is the kth order joint cumulant

with k = ki + kj + kl + · · · of r.v.s ui, uj , ul, ...

If r.v.s u1, u2, ..., ur are independent, the kth order cumulant
of y can simply be obtained as:

y(k) = a k
1 u

(k)
1 + a k

2 u
(k)
2 + · · ·+ a k

r u (k)
r (18)

In particular, in case of two r.v.s ui and uj , the second order
joint cumulants are calculated as:

u(i(2),j(0)) = σ 2
ui

u(i(0),j(2)) = σ 2
uj

u(i(1),j(1)) = ρui,uj σui σuj

(19)

where:
• σ is the standard deviation,
• ρui,uj is correlation coefficient between ui and uj ,

calculated as:

ρui,uj =
cov(ui, uj)

σui σuj

=
E[(ui − µui)(uj − µuj )]

σui σuj

(20)

where:
• cov(ui, uj) is the covariance between ui and uj ,
• µui and µuj are the means (expected values) of ui

and uj , respectively,
• |ρui,uj | ≤ 1; if ρui,uj = 0, ui and uj are indepen-

dent; if ρui,uj = 1, ui and uj are perfectly positively
dependent; if ρui,uj = −1, ui and uj are perfectly
negatively dependent.

The procedure for the cumulant-based Distributed Slack PPF
(DSPPF) is as follows

- Run DPF with DSBM to obtain the expected values x0, z0,
and IB0 and the sensitivity matrices [S0] and [T0].
- Calculate the self and joint cumulants [8], [14], [15] of nodal
power injections.
- Compute cumulants of state variables, line power flows, and
total imbalance using (14), (15), and (17).
- Calculate cumulants of power outputs of generators based
on (4).
- From cumulants, p.d.f.s and/or c.d.f.s of the output of
interest can be obtained by using, for example, Gram-Charlier
series expansion [8], or Edgeworth expansion, Cornish-Fisher
expansion [15], Von Mises function [7] and so on, depending
on the type of distributions considered.

From p.d.f.s and c.d.f.s obtained by DSPPF, the probability
of line overloading, over-/under-voltage, and the risk of critical

Fig. 1: Modified IEEE 14-bus Test System

ramping and overloading of generators can be calculated and
assessed, e.g., for the next hour, based on the forecast, the
electricity market output, etc.

Numerical Results

We illustrate the application of the proposed approach to a
case study on the modified IEEE 14-bus test system. The
single line diagram, branch, bus, and generator data of the
IEEE 14-bus test system are presented in [10], [16]. However,
in the present research, five wind farms were added to the
system at buses 9, 10, 12, 13, and 14 with the nominal power
of 27, 15, 12, 15, and 21 MW, respectively, as depicted in
Fig. 1. The information of wind power production, load, and
their uncertainties for a considered look-ahead horizon are
assumed to be known by forecast techniques. The information
about correlation among load/wind production are assumed
as well and could also be obtained by time-series techniques.
Nevertheless, they are beyond the scope of this paper. Here,
we assume that a forecast technique is available and provides
a 15-minute (or other time steps) sequence of load and wind
production forecasts, their expected forecast errors and correla-
tions during the considered scheduling horizon. For the sake of
simplicity, the forecast errors are assumed normally distributed
but it is possible to adopt other distributions. In addition,
the scheduled power output of generators are assumed to be
known. In the system, generators at bus 1 (G1) and 2 (G2) are
slack distributed so that, in any case, the power imbalance is
shared among them with corresponding participation factors
and according to the frequency control.

Let us assume that at time t0 a forecast for both wind and
loads is available for time tk and tk+1 = tk +∆t. Depending
on the time frame considered, the value for tk can range from
one hour to a dozen of hours, as well as the ∆t values can
range from 5 minutes to an hour. Of course, according to the
time frame considered, the values of uncertainty are likely to
be very different; however, the model can take into account
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TABLE I: Wind power forecasts at time step tk

bus 9 10 12 13 14

wind power (MW) 24 12 9 12 18

error (%) 12 12 12 12 12

TABLE II: Correlation coefficients among loads

bus 2 3 4 5 6 9 10 11 12 13 14

2 1.00 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05

3 - 1.00 0.15 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05

4 - - 1.00 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05

5 - - - 1.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05

6 - - - - 1.00 0.20 0.20 0.20 0.05 0.05 0.05

9 - - - - - 1.00 0.20 0.20 0.05 0.05 0.05

10 - - - - - - 1.00 0.20 0.05 0.05 0.05

11 - - - - - - - 1.00 0.05 0.05 0.05

12 - - - - - - - - 1.00 0.20 0.20

13 - - - - - - - - - 1.00 0.20

14 - - - - - - - - - - 1.00

TABLE III: Wind power forecasts at time step tk+1

bus 9 10 12 13 14

wind power (MW) 25 14 10 14 20

error (%) 15 15 15 15 15

TABLE IV: Real power schedules (MW) at the considered
time steps

bus 1 2

tk 235 30

tk+1 253 46

all these cases; in the present paper, just an application is
shown. Assume that for time tk the information about wind
power forecast is provided as in Table I. The forecast errors are
assumed normally distributed represented in terms of standard
deviation (in %) from the mean. In this test, the correlation
coefficients among wind resources are assumed to be 0.5 and
those among loads are shown in Table II.

For the next time step tk+1, load of power system is assumed
to be increased 10% and the forecasting error is kept equal
while wind power forecasts are provided as in Table III. The
power outputs of dispatchable generators at bus 1 and 2 are
assumed as in Table IV.

The proposed method is presented here with reference to the
evaluation of security at times tk and tk+1, as well as for
ramping constraint evaluation between times tk and tk+1. At
the same time, in order to assess the accuracy of the proposed
method, a MCS with 30,000 samples has been carried out and
taken as reference. The Average Root Mean Square (ARMS)
error is computed to compare the DSPPF and the MCS results.
ARMS is defined as:

ARMS =

√
N∑
i=1

(MCSi −DSPPFi)2

N
(21)

Fig. 2: p.d.f. curves of PG2 at time step tk

Fig. 3: p.d.f. curves of PG2 at time step tk+1

where MCSi and DSPPFi are the ith value on c.d.f. curves
obtained by MCS and DSPPF, respectively. N is the number
of samples considered in the range of the c.d.f.s.

The c.d.f.s and/or p.d.f.s of generator power outputs, power
flows, and voltages can be obtained by the proposed DSPPF.
The power imbalance in the system is shared by G1 and
G2 according to their participation factors. For instance, at
time step tk+1, the imbalance between schedules of generators
(Table IV) and their outputs computed according to a DPF with
DSBM is 1.55 MW. This imbalance depending on losses, is
shared among G1 and G2 with α1 = 0.42 and α2 = 0.58,
resulting in the following expected values: PG1 = 253.65 MW
and PG2 = 46.90 MW. At this point, the probabilistic part of
the DSPPF is carried out, resulting in p.d.f.s shown in Fig. 2
and 3 for PG2 at time steps tk and tk+1, respectively. It is
interesting that the curves obtained by the proposed method
are very close to the results obtained by MCS: the ARMS
values are 2.62×10−2% and 1.57×10−2%, respectively. The
expected values of PG2 at tk and tk+1 are 0.341 and 0.469
p.u. (in this test, the base power of 100 MVA is used),
respectively; they take into account both the share of the
losses (deterministic amount) and the uncertainties on both
wind generation and loads (with correlation), that provide the
shape of the p.d.f.s.
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Fig. 4: Ramping of PG2

Fig. 5: p.d.f. curves of V12 at time step tk+1

Based on the output of the PPFs, we can first assess the risk of
over-/under-regulation limits. Assume that the upper regulation
limit of generator G2 is 0.7 p.u. (the vertical line in Fig. 2 and
3): we can calculate the probability that PG2 is higher than its
upper limit as

tk : P (PG2 > 0.7) = 0

tk+1 : P (PG2 > 0.7) = 0.031
(22)

Moreover, output of DSPPF allows us to evaluate the risk of
critical ramping for generator G2 from time step tk to time step
tk+1, of course, depending on ∆t = tk+1 - tk. For example,
if ∆t = 15 minutes, from the distributions of power output at
the two time steps, the p.d.f. of ramping can be obtained as
in Fig. 4. Analogously, assume that the maximum ramp rate
for increasing the output of G2 is 0.4 p.u./15 min (the vertical
line in Fig. 4): the probability that the ramp is higher than its
upper bound is 0.02 (the filled area in Fig. 4).

For illustration of power flow and voltage assessments, the
p.d.f.s and/or c.d.f.s of a selected voltage at bus 12 (V12) and
real power flow through line 2-3 (P2−3) at tk+1 are presented
in Fig. 5 to 7, respectively.

Fig. 6: p.d.f. curves of P2−3 at time step tk+1

Fig. 7: c.d.f. curves of P2−3 at time step tk+1

If the upper bound of the real power flow (e.g., owing to
thermal rating) of line 2-3, for instance, is 0.95 p.u. (the
vertical line in Fig. 6 and 7), then the probability being greater
than its upper bound is zero at tk, but at tk+1 is 0.025, mainly
due to the increase of load. In this test, as the operating
range of voltage at bus 12 is [0.94, 1.06] p.u., voltage at bus
12 is within the range. The ARMS calculated for V12 and
P2−3 above are 2.86×10−2% and 9.83×10−3%, respectively,
showing the very good accuracy of the proposed method.

Conclusions

In this paper, a cumulant-based probabilistic power flow
methodology accounting for correlations among input random
variables is adopted to provide full spectrum of all possible
values of the desired variables for power system security
assessment under uncertainty. A probabilistic power flow
with distributed slack bus model is developed so that any
power imbalance in power system can be charged to a set
of dispatchable generators, for example, as a response to a
signal from the secondary frequency regulation, so reflecting
the actual power system operation.

The proposed approach is able to assess power system security
in terms of such as line overloading, over-/under-voltage and,
in particular, to evaluate the risk of critical ramping and over-
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/under-regulation limits of generators in systems with deep
penetration of highly variable resources, such as wind farms.
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