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Abstract

This is a short survey of recent advances in the convex
relaxation of the optimal power flow problem. Our focus is on
understanding structural properties, especially the underlying
convexity structure, of optimal power flow problems rather
than different computational algorithms.

Introduction

The optimal power flow (OPF) problem is fundamental in
power systems as it underlies many applications such as
economic dispatch, unit commitment, state estimation, volt/var
control, demand response, etc. OPF seeks to optimize a certain
objective function, such as power loss, generation cost and/or
user utilities, subject to Kirchhoff’s laws, power balance as
well as capacity, stability and security constraints on the
voltages and power flows. There has been a great deal of
research on OPF since Carpentier’s first formulation in 1962
[1]. An early solution appears in [2] and recent surveys can be
found in, e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14].

OPF is generally nonconvex and NP-hard, and a large number
of optimization algorithms and relaxations have been pro-
posed. A popular approximation is the DC OPF which is a
linearization and therefore easy to solve, e.g. [15], [16], [17],
[18]. An important observation was made in [19], [20] that
AC OPF can be formulated as a quadratically constrained
quadratic program and therefore can be approximated by a
semidefinite program. While this approach is illustrated in
[19], [20] on several IEEE test systems using an interior-point
method, whether or when the semidefinite relaxation will turn
out to be exact is not studied.

This extended abstract surveys main results on convex relax-
ations of OPF, formulated both using the bus injection model
and the branch flow model. The bus injection model is the
standard model for power flow analysis and optimization. It
focuses on nodal voltages. The branch flow model, on the other
hand, focuses on currents and powers on the branches. It has
been used mainly for modeling distribution circuits which tend
to be radial, but has received far less attention; see e.g. [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31]. We
formulate OPF in each of these two models and summarize
the main relaxation results in each model. Finally we show
that these two models and their relaxations are equivalent.

The focus of this paper is on understanding structural prop-
erties, especially the underlying convexity structure, of OPF
rather than numerical algorithms to compute a solution for
which a huge literature exists.

Mathematical preliminaries

In this section we summarize basic concepts and notations in
optimization, graph theory, and matrix completion that we will
use in presenting recent advances in the convex relaxation of
optimal power flow problems. More details can be found in,
e.g., [32], [33], [34], [35], [36], [37], [38], [39].

Notations

Let C denote the set of complex numbers, R the set of
real numbers, and Z the set of integers. For a ∈ C,
Re a and Im a denote the real and imaginary parts of a
respectively. For any set A ⊆ Cn let conv A denote the
convex hull of A. For a ∈ R, [a]+ := max{a, 0}. For
a, b ∈ C, a ≤ b means Re a ≤ Re b and Im a ≤ Im b. In
general scalar or vector variables are in small letters, e.g.,
u,w, x, y, z. Most power system quantities however are in
capital letters, e.g., Sij , Pij , Qij , Ii, Vi. A variable without a
subscript denotes a vector with appropriate components, e.g.,
s := (si, i = 1, . . . , n), S := (Sij , (i, j) ∈ E). For a vector
a = (a1, . . . , ak), a−i denotes (a1, . . . , ai−1, ai+1, ak). For
vectors x, y, x ≤ y denotes inequality componentwise.

Matrices are in capital letters. The transpose of a matrix A
is denoted by AT and its Hermitian (complex conjugate)
transpose by AH . A matrix A is Hermitian if A = AH . A
is positive semidefinite (or psd), denoted by A � 0, if A
is Hermitian and xHAx ≥ 0 for all x ∈ Cn; in particular if
A � 0 then by definition A = AH . For matrices A,B, A � B
means A−B is psd. Let Sn be the set of all n×n Hermitian
matrices and Sn+ the set of n× n psd matrices.

A graph G = (N,E) consists of a set N of nodes and a set
of edges E ⊆ N × N . If G is undirected then (j, k) ∈ E
if and only if (k, j) ∈ E. If G is directed then (j, k) ∈ E
only if (k, j) 6∈ E; in this case we will use (j, k) and j → k
interchangeably to denote an edge pointing from j to k. By
“j ∼ k” we mean an edge (j, k) if G is undirected and either
j → k or k → j if G is directed.
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Optimization

Quadratic constrained quadratic program (QCQP) is the fol-
lowing problem:

min
x∈Cn

xHC0x (1a)

subj. to xHCmx ≤ bm, m = 1, . . . ,M (1b)

where, for m = 0, . . . ,M , Cm ∈ Sn (so that xHCmx are
real) and bm ∈ R are given. If Cm, m = 0, . . . ,M , are
positive semidefinite then (1) is a convex QCQP. Otherwise
it is generally nonconvex.

Any psd rank-1 matrix X has a unique spectral decomposition
X = xxH . Using xHCmx = tr CmxxH = tr CmX we can
rewrite a QCQP as the following equivalent problem where
the optimization is over Hermitian matrices:

min
X∈Sn

tr C0X (2a)

subj. to tr CmX ≤ bm, m = 1, . . . ,M (2b)
X � 0, rank X = 1 (2c)

The objective function and the constraints (2b) are linear in
X and X � 0 is a convex constraint (Sn+ is a convex set). The
rank constraint in (2c) is the only nonconvex constraint and
the only source of computational difficulty.

Removing this constraint results in a semidefinite program
(SDP):

min
X∈Sn

tr C0X (3a)

subj. to tr CmX ≤ bm, m = 1, . . . ,M (3b)
X � 0 (3c)

SDP is a convex program and can be efficiently computed. We
call (3) a SDP relaxation of QCQP (1) because the feasible set
of (2) is a subset of the feasible set of SDP (3). A strategy for
solving QCQP (1) is to solve SDP (3) for an optimal X∗ and
check its rank. If rank X∗ = 1 then X∗ is optimal for (2) as
well and an optimal solution x∗ of QCQP (1) can be recovered
from X∗ through spectral decomposition X∗ = x∗(x∗)H . If
X∗ > 1 then no feasible solution of QCQP can be directly
obtained from X∗ but the optimal objective value of SDP
provides a lower bound to that of QCQP.

A special case of SDP is a second-order cone program (SOCP)
in the following rotated form:

min
x∈Cn

cH0 x (4a)

subj. to ‖Cmx+ bm‖2 ≤ (cHmx+ dm)(ĉHmx+ d̂m)

m = 1, . . . ,M (4b)

In this paper we will formulate optimal power flow problems
as QCQPs and describe SDP and SOCP relaxations of OPF.
The third relaxation we will describe is chordal relaxation
based on the notion of chordal extension of a network graph.

We now review some basic graph concepts, relate them to the
solution matrices of semidefinite programs, and show that a
chordal relaxation is indeed a semidefinite program.

Graph

Consider a graph G = (N,E) with N := (1, . . . , n). G can
either be undirected or directed with an arbitrary orientation.
Two nodes j and k are adjacent if j ∼ k ∈ E. A complete
graph is one where every pair of nodes is adjacent. A subgraph
of G is a graph F = (N ′, E′) with N ′ ⊆ N and E′ ⊆ E. A
clique of G is a complete subgraph of G. A maximal clique
of G is a clique that is not a subgraph of another clique of G.

By a path connecting nodes j and k we mean either a set of
distinct nodes (j, n1, . . . , ni, k) such that (j ∼ n1), (n1 ∼
n2), . . . , (ni ∼ k) are edges in E or this set of edges,
depending on the context. A cycle (n1, . . . , ni) is a path such
that (n1 ∼ n2), . . . , (ni ∼ n1) are edges in E. By convention
we exclude a pair of adjacent nodes (j, k) as a cycle. We will
only consider connected graphs in which there is path between
every pair of nodes.

A cycle in G that has no chord (an edge connecting two nodes
that are non-adjacent in the cycle) is called a minimal cycle. G
is chordal if all its minimal cycles are of length 3 (recall that
an edge (j, k) is not considered a cycle). A chordal extension
of G is a chordal graph on the same set of nodes as G that
contains G as a subgraph. Every graph has a chordal extension;
e.g. the complete graph on the same set of nodes is a trivial
chordal extension.

Partial matrix and completion

Fix a graph G = (N,E). For our purposes here we assume
G is undirected so that (j, k) ∈ E if and only if (k, j) ∈ E.
A G-partial matrix (or simply a partial matrix if G is clear
from the context) is a set of complex numbers:

XG := ([XG]jj ∈ C, j ∈ N, [XG]ij ∈ C, (i, j) ∈ E)

One can treat a partial matrix XG as entries of an n×n matrix
X whose entries Xjk are unspecified if (j, k) 6∈ E. Given a
partial matrix XG we call an n×n matrix X a completion of
XG if Xjj = [XG]jj , j ∈ N , and Xjk = [XG]jk, (j, k) ∈ E,
i.e., X agrees with XG on G.1

Consider any n × n matrix X . Given any k ≤ n nodes
(n1, n2, . . . , nk) let X(n1, . . . , nk) denote the k×k principal
submatrix of X defined by:

[X(n1, . . . , nk)]ij := Xij , i, j ∈ {n1, . . . , nk}

Any maximal clique q = (n1, n2, . . . , nk) of G with k nodes
defines a (fully specified) k × k principal submatrix denoted
by X(q) := X(n1, . . . , nk). In particular each edge (i, j) ∈ E

1We abuse the XG notation: given G, XG is a partial matrix defined on G,
and given an n×n matrix X , XG is a submatrix (Xjj , j ∈ N,Xjk, (j, k) ∈
E) of X . The meaning should be clear from the context.
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is a clique and defines a 2 × 2 principal submatrix X(i, j),
which we will use heavily in discussing optimal power flow
problems.

We extend the notions of Hermitian, psd, rank-1, and trace to
partial matrices as follows. We say that a partial matrix XG is
Hermitian, denoted by XG = XH

G , if [XG]kj = ([XG]jk)
H .

An n × n matrix X is psd if and only if all its principal
submatrices (including X itself) is psd. We extend the notion
of psd to partial matrices using this property, by saying that
a partial matrix XG is psd if all its “principal submatrices”
that are fully specified are psd. Formally XG is psd, denoted
by XG � 0, if XG(q) � 0 for all maximal cliques q of G.
Similarly we say that a partial matrix XG is rank-1, denoted by
rank XG = 1, if XG(q) is rank-1 for all maximal cliques q of
G. This means in particular that, since each edge (j, k) ∈ E
is a clique, if a partial matrix XG is psd or rank-1 then it
is automatically Hermitian. We say WG is 2 × 2 psd on G,
denoted by WG(j, k) � 0, if for all (j, k) ∈ E

WG(j, j) ≥ 0, WG(k, k) ≥ 0

WG(j, j)WG(k, k) ≥ |WG(j, k)|2 (5)

We say WG is 2×2 psd rank-1 on G, denoted by rank WG = 1,
if WG is 2× 2 psd and equality is attained in (5). Finally we
say that an n× n matrix C is defined on graph G if Cjk = 0
if (j, k) 6∈ E. If C and XG are defined on the same graph G
then tr CXG =

∑
j∈N Cjj [XG]jj +

∑
(j,k)∈E Cjk[XG]jk.

To simplify exposition suppose the matrices Cm in (3), m =
0, . . . ,M , are all defined on G, i.e., for all m, [Cm]jk = 0
if (j, k) 6∈ E. Then for any n × n matrix X , tr CmX = tr
CmXG. Conversely, given a partial matrix XG that satisfies
(3b), any completion X of XG satisfies (3b). Even though both
the objective function (3a) and the constraints (3b) depend only
on a partial matrix XG the constraint X � 0 in (3c) depends
also on entries not in XG. Indeed the number of complex
entries in X is n2 while the number of complex variables in
XG is only n+ 2|E|, which is much smaller than n2 if G is
large but sparse. Hence instead of solving for a full psd matrix
X directly as in SDP (3) we would like to compute a partial
matrix XG that has a psd completion X that satisfies (3b)–(3c).
If X is rank-1 then it also solves the problem (2) and hence
yields a solution to the original QCQP (1) through spectral
decomposition of X . Solving for such a partial matrix XG is
however difficult in general. In the next section we provide
two characterizations of partial matrices that guarantee a psd
rank-1 completion.

One of these characterizations is in terms of a chordal exten-
sion of G based on the following fundamental result in [39].

Theorem 1 ([39], Theorem 7): Fix a graph F . Every psd par-
tial matrix XF has a psd completion if and only if the graph
F is chordal.

This result suggests a way to exploit the sparsity of graph G
to solve SDP (3): solve for a partial matrix XF defined on

a chordal extension F of G instead of solving for the whole
matrix X ∈ Sn+. Given a solution X∗F that is psd we can
compute a psd completion X∗ guaranteed by Theorem 1 that
solves SDP (3) using the algorithm in [39].

Given a chordal extension F we now formulate chordal
relaxation as an SDP.

Chordal relaxation

Let F = (N,E′) be a chordal extension of G with E′ ⊇
E. Let q1, . . . , qK be the set of maximal cliques of F and
X(qk), k = 1, . . . ,K, be the set of principal submatrices of
X defined by these cliques. Consider the following problem
where the optimization variable is the Hermitian partial matrix
WF ∈ Cn+2|E′| defined on the chordal extension F :

min
XF=XH

F

tr C0XG (6a)

subj. to tr CmXG ≤ bm, m = 1, . . . ,M (6b)
XF (qk) � 0, k = 1, . . . ,K (6c)

We call this problem a chordal relaxation of QCQP (1). It
is equivalent to SDP (3) in the sense that given any feasible
solution XF of (6), Theorem 1 guarantees a psd completion X
that is feasible for (3); conversely given any feasible solution
X of (3), its submatrix XG is feasible for (6). Moreover these
two problems have the same objective value, i.e., tr C0X = tr
C0XF .

The first step in constructing the chordal relaxation (6) is to list
all the maximal cliques qk. Even though listing all maximal
cliques of a general graph is NP-hard it can be done efficiently
for a chordal graph. This is because a graph is chordal if and
only if it has a perfect elimination ordering [40] and computing
this ordering takes linear time in the number of nodes and
edges [41]. Given a perfect elimination ordering all maximal
cliques qk can be enumerated and XF (qk) constructed effi-
ciently [35]. For optimal power flow problems the computation
depends only on the topology of the power network, not on
operational data, and therefore can be done offline.

Bus injection model

OPF formulation

Consider a power network modeled by a connected undirected
graph G(N,E) where each node in N := {1, 2, . . . , n}
represents a bus and each edge in E represents a line. For
each edge (i, j) ∈ E let yij be its admittance. A bus j ∈ N
can have a generator, a load, both or neither. Traditionally
the loads are specified and the generations are variables to
be determined. Let sj be the net complex power injection
(generation minus load) at bus j ∈ N . Let Vj be the complex
voltage at bus j ∈ N and |Vj | denote its magnitude. Bus 1
is the slack bus with a fixed magnitude |V1| (normalized to
1 p.u.). The bus injection model is defined by the following
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power flow equations that describe the Kirchhoff’s law:

sj =
∑

k:(j,k)∈E

Vj(V
H
j − V Hk )yHjk, j ∈ N (7)

The power injections satisfy

sj ≤ sj ≤ sj , j ∈ N (8)

where sj and sj are given bounds on the net generation at bus
j. If there is no upper bound on the load or on the generation at
bus j then sj = −∞− i∞ or sj =∞+ i∞ respectively. This
is usually the case at the slack bus 1. We can eliminate the
variables sk from the OPF formulation by combining (7)–(8)
into

sj ≤
∑

k:(j,k)∈E

Vj(V
H
j − V Hk )yHjk ≤ sj , j ∈ N (9)

Then OPF in the bus injection model can be formulated in
terms of just the voltage vector V . All voltage magnitudes are
constrained:

vj ≤ |Vj |2 ≤ vj , j ∈ N (10a)

where vj and vj are given lower and upper bounds on
voltages. Usually v1 = v1 = 1. These constraints define the
feasible set of the optimal power flow problem in the bus
injection model:

V := {V ∈ Cn | V satisfies (9)− (10)} (11)

Let the cost function be C(V ). Typical costs include the cost
of generating real power at each generator bus or line loss over
the network. All these costs can be expressed as functions of
V . Then the optimal power flow problem is:
OPF:

min
V

C(V ) subject to V ∈ V (12)

Since (9) is quadratic, V is generally a nonconvex set. OPF is
thus a nonconvex problem and NP-hard to solve in general.

Remark 1: OPF (12) as defined is a simplified version that
ignores other important constraints such as line limits and
security constraints (see e.g. [42]). Our model also ignores
shunt elements. Some of these (e.g. shunt elements and line
limits) can be incorporated without any change to the results
in this paper.

OPF as QCQP

Before we describe convex relaxations of OPF we first show
that, when C(V ) := V HCV is quadratic in V , OPF (12) is
indeed a QCQP by converting it into the standard form (1),
following the derivation in [43].

To write (9) in the standard form (1a), define the n × n
admittance matrix Y as

Yij =


∑
k:k∼i

yik, if i = j,

−yij , if i 6= j and i ∼ j,
0 otherwise.

Y is symmetric but not necessarily Hermitian. Then

sj := VjI
H
j = (eHj V )(IHej)

where ej is the n-dimensional vector with 1 in the jth entry
and 0 elsewhere. Hence, since I = Y V , we have

sj = tr
(
eHj V V

HY Hej
)

= tr
(
Y Heje

H
j

)
V V H

= V HY Hj V

where Y Hj := Y Heje
H
j . Yj is an n×n matrix with its jth row

equal to the jth row of the admittance matrix Y and all other
rows equal to the zero vector. Y Hj is in general not Hermitian
so that V HY Hj V is in general a complex number and not
in the standard form (1b). Its real and imaginary parts can
be expressed in terms of the Hermitian and skew Hermitian
components of Y Hj defined as:

Φj :=
1

2

(
Y Hj + Yj

)
and Ψj :=

1

2i
(
Y Hj − Yj

)
(13)

Then

Re sj = V HΦjV and Im sj = V HΨjV

Let their upper and lower bounds be denoted by

p
j

:= Re sj and pj := Re sj
q
j

:= Re sj and qj := Re sj

Let Jj := eje
H
j denote the Hermitian matrix with a single 1

in the (j, j)th entry and 0 everywhere else. Suppose C(V ) :=
V HCV for some Hermitian matrix C. Then OPF (12) can be
written as a standard form QCQP:

min
x∈Cn

V HCV (14a)

s.t. V HΦjV ≤ pj , V H(−Φj)V ≤ −pj (14b)

V HΨjV ≤ qj , V H(−Ψj)V ≤ −qj (14c)

V HJjV ≤ −vj , V H(−Jj)V ≤ −vj (14d)

where j ∈ N in (14).

Feasible sets

The cost function C in OPF is usually assumed to be convex.
The difficulty of OPF (12) thus arises mainly from the non-
convex quadratic constraints. In this subsection we summarize
the main results in [44], [45] that characterize the feasible set
V of OPF in terms of partial matrices. These characterizations
lead naturally to SDP, chordal, and SOCP relaxations of OPF.

Given a voltage vector V ∈ V we can define a partial matrix
WG by:

[WG]jj := |Vj |2

[WG]jk := VjV
H
k =: [WG]Hkj
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Then the constraints (9)–(10) imply that the partial matrix WG

satisfies 2

sj ≤
∑

k:(j,k)∈E

([WG]jj − [WG]jk) yHjk ≤ sj , j ∈ N (15a)

vj ≤ [WG]jj ≤ vj , j ∈ N (15b)

These constraints can also be written in a (partial) matrix
form as:

p
j
≤ tr ΦjWG ≤ pj

q
j
≤ tr ΨjWG ≤ qj

vj ≤ tr JjWG ≤ vj

The converse is not always true: given a partial matrix WG

that satisfies (15) it is not always possible to recover a voltage
vector V in V. It is clear that any completion W of such a
WG would also satisfy (15) since yjk = 0 if (j, k) 6∈ E. We
can recover a voltage vector V ∈ V if W happens to be psd
rank-1 because in that case it can be uniquely decomposed
into W = V V H with V ∈ V.

We hence seek additional conditions on the partial matrix WG

that guarantee that it has a psd rank-1 completion W from
which V ∈ V can be recovered. To this end we say that a
partial matrix WG satisfies the cycle condition if, for every
cycle c in G, ∑

(i,j)∈c

∠Wij = 0 mod 2π (16)

We recall that a partial matrix WF is defined to be psd (or
rank-1) if WF (q) ≥ 0 (or rank WF (q) = 1) for all its
submatrices WF (q) defined on all the maximal cliques q of
F .

The following result characterizes when a definite matrix W
is of rank 1 in terms of its restriction onto G or any chordal
extension c(G), i.e., in terms of its submatrices WG and
Wc(G). It is proved in [44, Theorem 3], [45]. It implies that a
partial matrix WG has a psd rank-1 completion W if and only
if WG is 2× 2 rank-1 on G and satisfies the cycle condition
(16) if and only if it has a chordal extension Wc(G) that is psd
rank-1. It leads to three convex relaxations of OPF – SDP,
chordal, and SOCP relaxations – as explained below.

Theorem 2: Fix a graph G on n nodes and any chordal
extension c(G) of G. Given an n × n positive or negative
semidefinite matrix W the following are equivalent:

(1) rank W = 1.
(2) rank Wc(G) = 1.

2The constraint (15a) can also be written compactly in terms of the
admittance matrix Y as [46]:

s ≤ diag
(
WY H

)
≤ s

(3) rank WG(i, j) = 1 for all (i, j) ∈ E and the partial matrix
WG satisfies the cycle condition (16).

Remark 2: As shown in [44] the set of completions of a partial
matrix WG that satisfies the condition in Theorem 2(3) can
consist of a single positive semidefinite rank-1 matrix, or a
single negative semidefinite rank-1 matrix, and infinitely many
indefinite non-rank-1 matrices. For OPF we are interested only
in a partial matrix WG that is 2× 2 psd (W (i, j) � 0 for all
(i, j) ∈ E), in addition to the condition in Theorem 2(3). Such
a partial matrix WG cannot have a negative definite comple-
tion. Hence it must have a unique psd rank-1 completion W (as
well as indefinite non-rank-1 completions); see [44, Theorems
5 and 8] and discussions therein. We will construct this W
explicitly below.

The rank-1 condition is a property of the whole matrix
W . Theorem 2 characterizes this in terms of two different
submatrices WG and Wc(G) of W , defined on graph G and its
chordal extension c(G) respectively. This is important because
the submatrices are typically much smaller than W and can
be much more efficiently computed for large sparse networks.
The theorem thus allows us to solve simpler problems in terms
of partial matrices, as we now explain.

Define the set of n× n Hermitian matrices:

W1 := {W ∈ Sn | WG satisfies (15),
W � 0, rank W = 1}

Fix any chordal extension c(G) of G and define the set of
Hermitian partial matrices Wc(G):

Wc(G) := {Wc(G) | WG satisfies (15),
Wc(G) � 0, rank Wc(G) = 1}

where given a Wc(G), WG denotes the submatrix of Wc(G)

with off diagonal entries [WG]jk defined only for (j, k) ∈ E.
Finally define the set of Hermitian partial matrices WG:

W2 := {WG |WG satisfies (15), (16),WG(i, j) � 0,
rank WG(i, j) = 1 for all (i, j) ∈ E}

Remark 2 immediately implies

Corollary 3: Given a partial matrix Wc(G) ∈Wc(G) or WG ∈
W2 there is a unique psd rank-1 completion W ∈W1.

We say two sets A and B are equivalent, denoted by
A ≡ B, if there is a bijection between them. Even though
W1,Wc(G),W2 are different (e.g. their matrices have different
dimensions) Theorem 2 and Corollary 3 imply that they are
all equivalent to the feasible set of OPF.

Corollary 4: V ≡W1 ≡Wc(G) ≡W2.

Corollary 4 suggests three equivalent problems to OPF. We
assume the cost function C(V ) in OPF depends on V
only through the G-partial matrix WG. For example if the
cost is total real line loss in the network then C(V ) =∑
j Re sj =

∑
j

∑
k:(j,k)∈E Re ([WG]jj − [WG]jk) yHjk. If
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the cost is a weighted sum of real generation power then
C(V ) =

∑
j

(
cj Re sj + pdj

)
where pdj are the given real

power demands at buses j; again C(V ) is a function of the
G-partial matrix WG. Then OPF (12) is equivalent to

min
W

C(WG) subject to W ∈W (17)

where W is any one of the sets W1,Wc(G),W2 and the
variable W is of appropriate dimension. This makes use of
the fact that these four problems have the same objective
function and there is a bijection among their feasible sets.
More specifically, given an optimal solution W ∗ in W1, since
W is rank-1, it can be uniquely decomposed into W ∗ =
V ∗(V ∗)H . Then V ∗ is in V and an optimal solution of OPF
(12). Alternatively given an optimal solution W ∗F in Wc(G)

or W2, Corollary 3 guarantees that W ∗F has a psd rank-1
completion W ∗ in W1 from which an optimal V ∗ ∈ V can be
recovered through spectral decomposition. For a partial matrix
W ∗G ∈W2 we will provide below an alternative, a much more
direct, construction of V ∗ ∈ V.

Convex relaxations

The difficulty with solving (17) is that the feasible sets
W1, Wc(G), and W2 are still nonconvex due to the rank-1
constraints and the cycle condition (16). Their removal leads to
the SDP, chordal, and SOCP relaxations of OPF respectively.

Relax W1 to a convex subset of Sn:

W+
1 := {W ∈ Sn | WG satisfies (15),W � 0} (18)

Relax Wc(G) to a convex set of Hermitian partial matrices:

W+
c(G) := {Wc(G) | WG satisfies (15),Wc(G) � 0}

(19)
Relax WG to a convex set of Hermitian partial matrices
by dropping both the 2 × 2 rank-1 condition and the cycle
condition:

W+
2 := {WG | WG satisfies (15),

WG(j, k) � 0, (j, k) ∈ E}
Define the problems:
OPF-sdp:

min
W

C(WG) subject to W ∈W+
1 (20)

OPF-ch:

min
Wc(G)

C(WG) subject to Wc(G) ∈W+
c(G) (21)

OPF-socp:

min
WG

C(WG) subject to WG ∈W+
2 (22)

Since W1 ⊆ W+
1 , Wc(G) ⊆ W+

c(G), W2 ⊆ W+
2 , OPF-sdp,

OPF-ch, OPF-socp provide lower bounds on the optimal value
of OPF (12) in light of Corollary 4.

We make two comments on these semidefinite programs. First
the condition WG(j, k) � 0 in the definition of W+

2 is
equivalent to

[WG]jj ≥ 0, [WG]kk ≥ 0, [WG]jj [WG]kk ≥ |[WG]jk|2

This is a second-order cone and hence OPF-socp is indeed
an SOCP in the rotated form (4). Second OPF-ch is a convex
chordal relaxation in the standard form (6). SOCP relaxation
for OPF seems to be first observed in [47] for the bus
injection model and in [48] for the branch flow model. Chordal
relaxation for OPF is first proposed in [29].

For a mapping f : A→ B let f(A) denote the set {f(x) | x ∈
A} ⊆ B. For two sets A and B that are not necessarily in
the same space we say that A is an equivalent subset of B,
denoted by A v B, if there is a mapping f : A → B such
that f(A) ⊆ B and f is a bijection from A to f(A). Clearly
A ≡ B if and only if A v B and B v A. The feasible set
of OPF (12) is an equivalent subset of the feasible sets of the
relaxations, as the following results from [44], [45] show.

Theorem 5 ([44], [45]): 1) If G is radial then V v W+
1 ≡

W+
c(G) ≡W+

2 .
2) If G has cycles then V vW+

1 ≡W+
c(G) vW+

2 .

Let C∗, Csdp, Cch, Csocp be the optimal values of OPF, OPF-
sdp, OPF-ch, OPF-socp respectively. Theorem 5 and Corollary
4 directly imply

Corollary 6: 1) If G is radial then C∗ ≥ Csdp = Cch =
Csocp.

2) If G has cycles then C∗ ≥ Csdp = Cch ≥ Csocp.

We now comment on the computational aspect of these three
relaxations. First the choice of the chordal extension c(G) of
G determines the number of variables in OPF-ch and hence
the required computation effort, but it does not affect its
optimal value. A good choice of c(G) is nontrivial. In the
worst case OPF-ch can require as much effort as OPF-sdp, but
simulation results on IEEE test systems in [45] confirm that it
can be much more efficiently solved than OPF-sdp when the
network is large and sparse, as practical systems are. Indeed
the numbers of lines in IEEE test systems (with 14, 30, 57,
118, 300 buses) are less than 1.6 times the numbers of buses,
much less than the squares of them.

Second though all OPF-sdp, OPF-ch, and OPF-socp are con-
vex and hence can be solved in polynomial time, SOCP in
general requires a much smaller computational effort than SDP
for large sparse networks. Indeed G is a subgraph of any
chordal extension c(G) which is a subgraph of the complete
graph defined on N , and hence the number of complex
variables (matrix entries) is the smallest in OPF-socp (|WG|),
the largest in OPF-sdp (n2), with OPF-ch typically in between.

Finally, and most importantly, Corollary 6 suggests that, when
G is a tree, we should always solve OPF-socp. When G has
cycles then there is a tradeoff between computational effort
and exactness in deciding between solving OPF-socp or OPF-
sdp/OPF-ch. Between OPF-sdp and OPF-ch, OPF-ch seems
much more preferable as they have the same accuracy (in terms
of exactness) but OPF-ch is much faster to solve for large
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sparse networks, as discussed above.

Solution strategy

The general strategy to solving OPF (12) based on convex
relaxation is illustrated in Figure 1. For OPF-sdp if the optimal

OPF;socp)

OPF)solu2on)

Recover)V* cycle)
condi2on)

Y)

rank;1)

OPF;ch) OPF;sdp)

Y)

WG
* Wc(G )

* W *

Y,)mesh)

2x2)rank;1)
Y)

radial)

Fig. 1: Solving OPF (12) based on convex relaxations in the
bus injection model.

solution W ∗ is rank-1 then an optimal solution V ∗ for OPF is
recovered through the unique spectral decomposition W ∗ =
V ∗(V ∗)H . For OPF-ch if the optimal solution Wc(G) is rank-
1 then a psd rank-1 completion W ∗ can be computed from
Wc(G) according to Theorem 1 from which an optimal V ∗

can be recovered.

For OPF-socp if the optimal solution WG is 2×2 rank-1 on G
and satisfies the cycle condition (16) (a radial network auto-
matically satisfies (16)) then a unique V ∗ can be constructed
explicitly as follows. Let T be an arbitrary spanning tree of
G. Let Pij denote the unique path from node i to node j in
T . For i = 1, . . . , n, let

|V ∗i | :=
√

[WG]ii (23)

∠V ∗i :=
∑

(j,k)∈P1i

∠ [WG]jk (24)

Without loss of generality set ∠V1 = 0 in this construction
(otherwise, add ∠V1 to (24)). Then it can be checked that V ∗

is an optimal solution of OPF (12).

The key for this solution strategy is that the convex relaxations
are exact so that an V ∗ can be recovered. Formally if every
optimal solution W ∗ of OPF-sdp is rank-1, and hence also
effectively solves OPF, then we say that OPF-sdp is exact.
Similarly if every optimal solution W ∗c(G) of OPF-ch is rank-
1 then we say OPF-ch is exact. If every optimal solution W ∗G
of OPF-socp is 2× 2 rank-1 and satisfies the cycle condition
(16) then we say OPF-socp is exact.

In the following subsections we summarize results from [49],

[50], [43], [51], [47], [52] that provide sufficient conditions
for the relaxations to be exact, i.e., for the first inequality in
Corollary 6 to attain equality. We will present these conditions
for two special cases: AC radial networks and DC mesh net-
works. AC radial networks are important as most distribution
systems are radial.

Exact relaxation: AC radial

As discussed previously we should always solve SOCP if the
network graph G is a tree. We hence focus in this subsection
on the exactness of OPF-socp (22).

Separating line Fix an undirected graph G = (N,E). Fix
Hermitian matrices Cm ∈ Sn, m = 0, . . . ,M , defined on G,
i.e., [Cm]jk = 0 if (j, k) 6∈ E. Consider QCQP:

min
x∈Cn

xHC0x (25a)

s.t. xHCmx ≤ bm, m = 1, . . . ,M (25b)

and its SOCP relaxation where the optimization variable
ranges over Hermitian partial matrices WG:

min
WG=WH

G

tr (C0W ) (26a)

s.t. tr CmWG ≤ bm, m = 1, . . . ,M (26b)
WG(i, j) � 0, (i, j) ∈ E (26c)

The following result is proved in [43]. We assume3

A1: G is a tree.
A2: For each link (j, k) ∈ E there exists an αjk such that

∠ [Cm]jk ∈ [αij , αij + π] for all m = 0, . . . ,M .

Let C∗, Csocp denote the optimal values of QCQP (25) and
SOCP (26) respectively.

Theorem 7 ([43]): Suppose A1–A2 holds. Then SOCP is ex-
act, i.e., C∗ = Csocp and an optimal solution x∗ of QCQP (25)
can be obtained from every optimal solution W ∗G of SOCP
(26).

We now apply Theorem 7 to our OPF problem (14). When the
network is radial the condition A2 in the theorem implies a
simple pattern on the power injection constraints (14b)–(14c).
A2 depends only on the off-diagonal entries of C, Φj , Ψj (Jj
is a digonal matrix). Let yjk = gjk− ibjk with gjk > 0, bjk >
0. Then we have from (13)

[Φk]ij =


1
2Yij = − 1

2 (gij − ibij) if k = i
1
2Y
∗
ij = − 1

2 (gij + ibij) if k = j

0 if k 6∈ {i, j}

[Ψk]ij =


−1
2i Yij = − 1

2 (bij + igij) if k = i
1
2iY
∗
ij = − 1

2 (bij − igij) if k = j

0 if k 6∈ {i, j}

3All angles should be interpreted “mod 2π”, i.e., projected onto [0, 2π).
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Hence for each line (j, k) ∈ E the relevant angles for A2 are
those of Cjk and

[Φj ]jk = −1

2
(gjk − ibjk)

[Φk]jk = −1

2
(gjk + ibjk)

[Ψj ]jk = −1

2
(bjk + igjk)

[Ψk]jk = −1

2
(bjk − igjk)

as well as the angles of −[Φj ]jk,−[Φk]jk and
−[Ψj ]jk,−[Ψk]jk. These quantities are shown in Figure
2 with their magnitude normalized to a common value and
explained in the caption of the figure.

Φ j
"# $% jk

Re

Im

− Φ j
#$ %& jk

Φk[ ] jk

− Φk[ ] jk

Ψ j
"# $% jk − Ψ k[ ] jk

Ψ k[ ] jk − Ψ j
#$ %& jk

lower)bounds)
on))pj,qj, pk,qk

α jk

Cjk

upper)bounds)
on))pj,qj, pk,qk

Fig. 2: Condition A2 on a line (j, k) ∈ E. The quantities
([Φj ]jk, [Φk]jk, [Ψj ]jk, [Ψk]jk) on the left-half plane corre-
spond to finite upper bounds on (pj , pk, qj , qk) in (14b)–(14c);
(−[Φj ]jk,−[Φk]jk,−[Ψj ]jk,−[Ψk]jk) on the right-half plane
correspond to finite lower bounds on (pj , pk, qj , qk). A2 is
satisfied if there is a line through the origin, characterized by
the angle αjk, so that the quantities corresponding to finite
upper or lower bounds on (pj , qj) and (pk, qk) lie on one
side of the line, including on the line itself. The load over-
satisfaction condition in [50], [47] and in [53, Theorem 7]
corresponds to the Im-axis that excludes all quantities on the
right-half plan (no lower bounds on power injections). The
sufficient condition in [46, Theorem 2] corresponds to the red
line in the figure that allows a finite lower bound on pk.

The condition A2 applied to OPF (14) takes the following
form (see Figure 2):

A2’: For each link (j, k) ∈ E there is a line in the complex
plane through the origin such that [C]jk as well as those
±[Φi]jk and ±[Ψi]jk corresponding to finite lower or upper
bounds on (pi, qi), for i = j, k, are all on one side of the
line, including on the line itself.

Corollary 8: Suppose G is a tree. If A2’ holds then OPF-
socp is exact, i.e., C∗ = Csocp and an optimal solution V ∗ of
OPF (12) can be obtained from every optimal solution W ∗G of
OPF-socp (22).

This is proved in [43] which also includes constraints on
real branch power flows and line losses (see also the long
version of [54] for a different proof). Corollary 8 includes
several sufficient conditions for exact relaxation as special
cases. For instance the load over-satisfaction condition in [50],
[47] and in [53, Theorem 7] corresponds to the Im-axis that
excludes all quantities on the right-half plan (no lower bounds
on power injections). The sufficient condition in [46, Theorem
2] corresponds to the red line in Figure 2 that allows a finite
lower bound on the real power injection at one end of a line
(pj or pk but not both), and no finite lower bound on reactive
power injections qj . The approach in the independent works
[50], [51], [46] proves that OPF-sdp (20) is exact, not by
showing that an optimal W ∗ would be rank-1, but by showing
a certain matrix A∗ in the complementary slackness condition
tr A∗W ∗ = 0 for SDP has rank n − 1, as suggested in [49].
They make use of the fact that, if an n× n Hermitian matrix
M is positive semidefinite and its underlying graph is a tree,
then rank M ≥ n − 1; see e.g., [55], [56, Theorem 3.4] and
[57, Corollary 3.9]. The complementary slackness condition
tr A∗W ∗ = 0 then implies rank W ∗ = 1. The proof in [53]
also makes use of the geometry of the power injection region,
first explored in [51], to which we now turn.

Pareto front When the voltage magnitudes are fixed [46],
[53], [58] provide a geometric insight on why convex relax-
ations are exact. For simplicity we will explain the intuition
using the result in [53] for the OPF problem where |Vi| are
given for all i ∈ N and reactive powers are ignored (the
objective function and the constraints depend only on the
real power injections pj , j ∈ N ). This result is extended to
include reactive power in [58, Theorem 1] with fixed |Vi|
where an additional constraint is imposed on the lower bounds
of reactive power injections to ensure these lower bounds are
never tight. The case of variable |Vi| without reactive power
is considered in [53, Theorem 7] but the exact relaxation
result there requires the load over-satisfaction condition and
is therefore a special case of Corollary 8 with line limits.

Recall that yjk = gjk − ibjk with gjk > 0, bjk > 0. Consider
the following OPF problem:

min
p,P,V

C(p) (27a)

s.t. p
j
≤ pj ≤ pj (27b)

θjk ≤ θjk ≤ θjk (27c)

pj =
∑
k:k∼j

Pjk (27d)

Pjk = |Vj |2gjk − |Vj ||Vk|gjk cos θjk (27e)
+|Vj ||Vk|bjk sin θjk (27f)

|Vj | = 1 (27g)
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where j ∈ N in the above constraints, θjk := θj − θk, and
θj are the phase angles of Vj , i.e., Vj = |Vj | eiθj .

We first comment on the constraints on angles θjk in (27).
When the voltage magnitudes |Vi| are fixed, constraints on
real power flows, branch currents, line losses, and stability
can all be represented in terms of θjk. Indeed a line flow
constraint of the form |Pjk| ≤ P jk becomes a constraint on
θjk using the expression for Pjk in (27). A constraint on
current of the form |Ijk| ≤ Ijk is also a constraint on θjk
since Ijk = yjk(Vj − Vk) and |Vj |, |Vk| are fixed. The line
loss over (j, k) ∈ E is equal to Pjk + Pkj which is again a
function of θjk. Stability typically requires |θjk| to stay within
a small threshold. Therefore given constraints on branch power
or current flows, losses, and stability, appropriate bounds
θjk, θjk can be determined in terms of these constraints. We
assume this has been done and θjk, θjk are given to ensure
the satisfaction of these constraints.

We then express (27) as an optimization over only the bus
injections p := (pj , j ∈ N) by using the equality constraints to
eliminate the real branch power flows P := (Pjk, (j, k) ∈ E),
voltage magnitudes |V | := (|Vj |, j ∈ N), and angles θ :=
(θjk, (j, k) ∈ E). Define the injection region

Pθ :=

p ∈ Rn | pj =
∑
k:k∼j

Pjk,

Pjk = gjk − gjk cos θjk + bjk sin θjk,

θjk ≤ θjk ≤ θjk, (j, k) ∈ E

}
(28)

Let Pp := {p ∈ Rn | p
j
≤ pj ≤ pj , j ∈ N}. Then (27) takes

the form:

min
p

C(p) s.t. p ∈ Pθ ∩ Pp (29)

This problem is hard because the set Pθ defined in (28) is
nonconvex.

For a set A let convA denote the convex hull of A. A convex
relaxation of (29) enlarges the nonconvex feasible set Pθ ∩Pp
of (29) to a convex set:

min
p

C(p) s.t. p ∈ conv(Pθ) ∩ Pp (30)

When C(p) is linear in p this problem is SDP/SOCP [53].
For simplicity of exposition we will make this assumption
even though the insight is about feasible sets and holds more
generally than linear objective functions. Note that the feasible
set of the relaxation (30) is generally a superset of the convex
hull of the feasible set of (29) because conv and intersection
do not commute, i.e.,

conv(Pθ) ∩ Pp ⊇ conv(Pθ ∩ Pp)

The key insight of [53], [58] shows that these two convex
sets have the same Pareto front which turns out to coincide
with the Pareto front of the nonconvex feasible set Pθ ∩ Pp,
provided the θjk are suitably bounded.

More precisely, we say that a point x ∈ A ⊆ Rn is a Pareto
optimal point in A if there does not exist another x′ ∈ A
such that x′ ≤ x with at least one strictly smaller component
x′j < xj . The Pareto front of A, denoted by O(A), is the set
of all Pareto optimal points in A. The significance of O(A)
is that, for any increasing function, its minimizer, if exists,
is necessarily in O(A) whether A is convex or not. If A is
convex then x∗ is a Pareto optimal point in O(A) if and only
if there is a vector c := (c1, . . . , cn) ≥ 0 such that x∗ is a
minimizer of cTx over A.

The following result says that the sets of optimal points of (29)
and its relaxation (30) are identical, implying that SDP/SOCP
is exact when C(p) is linear.

Theorem 9 ([53], [58]): Suppose G is a tree and for all
(j, k) ∈ E

− tan−1
bjk
gjk

< θjk ≤ θjk < tan−1
bjk
gjk

(31)

If (29) is feasible then

(1) O(Pθ ∩ Pp) = O( conv(Pθ) ∩ Pp ).
(2) The SDP/SOCP relaxation is exact, i.e., every optimal

solution p∗ of (30) is also optimal for (29).

Theorem 9(1) implies that every optimal solution of (30) is
feasible for (29) and hence SDP/SOCP relaxation is exact.
The key observation that establishes Theorem 9(1) is O(Pθ) =
O(conv(Pθ)).

Exact relaxation: DC mesh

In this subsection we consider purely resistive network, i.e.,
the impedance/admittance zjk = 1/yjk = rjk, the power
injections sj = pj , and the voltages Vj are all real.

Suppose the cost function of OPF depends only on the power
injections p := (pj , j ∈ N) and is separable, i.e., C(p) =∑
j Cj(pj).

Theorem 10 ([49], [59]): OPF-socp and OPF-sdp are exact if,
for all j ∈ N , p

j
= −∞ and Cj(pj) are strictly increasing.

The exactness of SDP relaxation for DC networks is first
proved in [49] using a duality argument. The DC nature of the
problem allows the application of Perron-Frobenius theorem
to a irreducible matrix with nonpositive off-diagnoal elements.
The exactness of SOCP is reported in [59] using [38, Theorem
3.1]. A similar result is also provided in Theorem 16 below
for the branch flow model.

The following result is proved using a different technique.

Theorem 11 ([52]): Fix V1. OPF-socp is exact if vj =∞ for
all j ∈ N \ {1} and C1(p1) is strictly increasing. Moreover if
OPF-socp is exact then its solution is unique.
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Branch flow model

OPF formulation

In the branch flow model we adopt a directed connected graph
G̃ = (N, Ẽ) to represent a power network where each node
in N := {1, . . . , n} represents a bus and each edge in Ẽ
represents a line. Fix an arbitrary orientation for G and let
m := |Ẽ| be the number of directed edges in G. Denote an
edge by (i, j) or i → j if it points from node i to node j.
For each edge (i, j) ∈ Ẽ let zij := 1/yij be the complex
impedance on the line, let Iij be the complex current from
buses i to j, and Sij = Pij+ iQij be the sending-end complex
power from buses i to j. For each node i ∈ N let Vi be the
complex voltage at bus i. Let si be the net complex power
injection (generation minus load) at bus i. We use si to denote
both the complex number pi + iqi and the real pair (pi, qi)
depending on the context.

The branch flow model is defined by the following set of power
flow equations:

Ijk = yjk(Vj − Vk), j → k ∈ Ẽ (32a)

Sjk = Vj I
H
jk, j → k ∈ Ẽ (32b)

sj =
∑
k:j→k

Sjk −
∑
i:i→j

(
Sij − zij |Iij |2

)
, j ∈ N (32c)

where (32a) describes the Ohm’s law, (32b) defines branch
power in terms of voltage and current, and (32c) imposes
power balance at each bus where zij |Iij |2 represents the line
loss so that Sij−zij |Iij |2 is the receiving-end complex power
at bus j from bus i. As in the bus injection model the power
injections satisfy

sj ≤ sj ≤ sj , j ∈ N (33)

where sj and sj are given. We often assume s1 = −∞− i∞
and s1 = ∞ + i∞. We can eliminate the variables sj by
combining (32a) and (33) into

sj ≤
∑
k:j→k

Sjk −
∑
i:i→j

(
Sij − zij |Iij |2

)
≤ sj ,

j ∈ N (34)

All voltage magnitudes are constrained:

vj ≤ |Vj |2 ≤ vj , j ∈ N (35)

where V j and V j are given. We often assume v1 = v1 = 1.

Denote the variables in the branch flow model by x̃ :=
(S, I, V ) ∈ Cn+2m. These constraints define the feasible set
of the OPF problem in the branch flow model:

X := {x̃ ∈ Cn+2m | x̃ satisfies (32a), (32b), (34), (35)} (36)

Let the cost function in the branch flow model be C(x̃). Then
the optimal power flow problem in the branch flow model is:
OPF:

min
x̃

C(x̃) subject to x̃ ∈ X (37)

Since (32) is quadratic, X is generally a nonconvex set. OPF
is thus a nonconvex problem and NP-hard to solve in general.

SOCP relaxation

The cost function C is usually convex so the difficulty of OPF
is due to the nonconvexity of the feasible set X. Following
[60] we now enlarge X into a second-order cone in two steps,
leading to an SOCP relaxation of (37).

Angle relaxation. First we eliminate the phase angles from
the complex voltages V and currents I . Formally this defines a
mapping h : Cn+2m → Rn+3m that maps an x̃ = (S, I, V ) to
h(x̃) = x := (S, `, v) with `jk = |Ijk|2 and vj = |Vj |2.4 This
set of new variables x satisfies, for (j, k) ∈ Ẽ (eliminating the
phase angles of the complex voltages V and currents I from
(32a)–(32b)),

vk = vj − 2 Re (zHjkSjk) + |zjk|2`jk (38)

`jkvj = |Sjk|2 (39)

in addition to (32a). This is the model first proposed by Baran-
Wu in [21], [22] for distribution systems. Define the set of
solutions to the Baran-Wu model that also satisfy the OPF
constraints as:

Xnc2 := {x ∈ Rn+3m | x satisfies (38), (39)
(34), (35)}

The mapping h relaxes a voltage Vj or current Ijk from a point
in the complex plane into a circle with its magnitude as the
radius of the circle. While (32) specifies n + 2m (nonlinear)
equations in n+ 2m complex variables, the Baran-Wu model
(38), (39), (34), (35) specifies 2(n + m) equations in n +
3m real variables. Since m ≥ n − 1 (G̃ is connected), there
are generally insufficient number of equations to determine
uniquely all the variables x when G̃ contains cycles. When G̃
is a tree (which is the case in [21], [22]), v1 is set to 1, and
s1 := (p1, q1) are variables to be determined, then m = n− 1
and both the number of equations and the number of real
variables become 4n−1. Indeed the results in [60] shows that
h : X→ Xnc2 is bijective when G̃ is a tree. Otherwise h(X) (
Xnc2 , i.e., h is not surjective on Xnc2 . We now characterize the
subset h(X) of Xnc2 over which h is surjective and construct
the inverse h−1 of h.

Given an x := (S, `, v) ∈ Rn+3m define β := β(x) ∈ Rm by

βij(x) := ∠
(
vi − zHij Sij

)
, (i, j) ∈ Ẽ (40)

Even though x does not include phase angles of V it turns
out that x “implies” a phase angle difference across each line
(i, j) ∈ Ẽ given by βij(x) [60, Theorem 2]. We are interested
in the set of x such that βij(x) can be expressed as θi − θj
for some voltage angles θ. To this end let B be the m × n
(transposed) incidence matrix of G̃ defined as

Bei =


1 if edge e ∈ Ẽ leaves node i
−1 if edge e ∈ Ẽ enters node i
0 otherwise

4We abuse notation and use S both to denote a complex variable in Cm

and as a shorthand for the real variables (P,Q) in R2m.
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Consider the set of x such that

∃θ(x) that solves
{
Bθ = β(x) mod 2π
θ1 = 0

(41)

i.e., β(x) is in the range space of B (mod 2π).5 A solution
θ(x), if exists, is unique in [−π, π)n. With such a θ(x) the
inverse mapping h−1 : Rn+3m → Cn+2m is defined by
h−1(S, `, v) = (S, I, V ) where

Vj :=
√
vj e

iθj(x), j ∈ N (42a)

Ijk :=
√
`jk e

i(θj(x)−∠Sjk), (j, k) ∈ Ẽ (42b)

Define the set:

X2 := Xnc2 ∩ {x ∈ Rn+3m | x satisfies (41)}

It is shown in [60] that, given any x, (41) either has no solution
or has at most one solution θ(x) in [−π, π)n. This means that
h is a bijection from X to X2 with its inverse h−1 defined by
(40)–(42). Hence X ≡ X2; see Figure 3.

h

h−1

Cn+2m Rn+3m

X2
nc

X X2

X2
+

Fig. 3: Feasible set X of OPF in the branch flow model,
the equivalent set X2 (defined by the bijection h) and its
relaxations Xnc2 , X+

2 .

SOCP relaxation. The set Xnc2 is still nonconvex because
of the quadratic equalities in (39). The second step of the
relaxation relaxes them to inequalities:

`jkvj ≥ |Sjk|2, (j, k) ∈ Ẽ (43)

Define the set:

X+
2 := {x ∈ Rn+3m | x satisfies (38), (43)

(34), (35)}

Clearly X2 ⊆ Xnc2 ⊆ X+
2 ; see Figure 3.

These three sets define the following three optimization prob-
lems. We assume the cost function c(x̃) in OPF (37) depends

5The condition (41) on x has a familiar interpretation: the voltage angle
differences implied by x sum to zero (mod 2π) around any cycle [60, Theorem
2(2)].

on x̃ ∈ Cn+2m only through x ∈ Rn+3m. For example if
the cost is total real line loss in the network then c(x̃) =∑

(j,k)∈Ẽ Re zjk`jk. If the cost is a weighted sum of real
generation power then c(x̃) =

∑
j(cjpj + pdj ) where pj are

the real parts of sj in (32c) and pdj are the given real power
demands at buses j; again c(x̃) depends only on x. Consider:
OPF:

min
x

c(x) subject to x ∈ X2

OPF-nc:

min
x

c(x) subject to x ∈ Xnc2

OPF-socp:

min
x

c(x) subject to x ∈ X+
2

Let C∗ be the optimal cost of OPF (37) in the branch flow
model. Let Copf , Cnc, Csocp be the optimal costs of OPF,
OPF-nc, OPF-socp respectively. The following result follows
directly from [60, Theorems 2, 4].

Theorem 12 ([60]): For general networks

1) X ≡ X2 ⊆ Xnc2 ⊆ X+
2 .

2) C∗ = Copf ≥ Cnc ≥ Csocp.

If G̃ is radial then

1) X ≡ X2 = Xnc2 ⊆ X+
2 .

2) C∗ = Copf = Cnc ≥ Csocp.

We say OPF-socp is exact (with respect to OPF) if every
optimal solution x∗ of OPF-socp attains equality in (43)
and satisfies (41) so that an optimal solution to OPF can
be recovered. An algorithm similar to that presented in the
previous subsection on Solution Strategy can be used to
compute an optimal OPF solution from x∗. Algebraically, for
any optimal solution x∗ of OPF-socp that attains equality in
(43) and satisfies (41), there is a unique θ(x∗) in [−π, π)n.
The inverse x̃ := h−1(x∗) is an optimal point for OPF.

We now turn to sufficient conditions under which OPF-socp is
exact. We present the results first for AC radial networks and
then for DC mesh networks. Finally we show that the case of
AC mesh networks can be reduced to the case of AC radial
networks using phase shifters.

Exact relaxation: AC radial

Recall that

sj := (pj , qj) =: (pgj − p
c
j , q

g
j − q

c
j)
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denote the net power injections at buses j. From (32c) they
are given in terms of x by:

pgj − p
c
j =

∑
k:j→k

Pjk −
∑
i:i→j

(
Pij − rij |Iij |2

)
, j ∈ N

qgj − q
c
j =

∑
k:j→k

Qjk −
∑
i:i→j

(
Qij − xij |Iij |2

)
, j ∈ N

Assume

A3: The cost function C(x) is convex, strictly increasing in `,
nonincreasing in load (pc, qc), and independent of branch
flows (P,Q).

To avoid triviality we assume that the problem OPF is feasible.

Theorem 13 ([48]): Suppose A3 holds. If pcj = qcj =∞, j ∈
N , then OPF-socp is exact.

The next set of sufficient conditions, proved in [61], [62], allow
finite upper bounds on loads (finite lower bounds on power
injections), but remove upper limits on voltage magnitudes.
To state them precisely, define Tj as the subtree rooted at bus
j including bus j. Define the total net injections in a subtree
as:

Slin
jk(p, q) := P lin

jk (p) + iQlin
jk(q)

:=
∑
i∈Tk

pi + i
∑
i∈Tk

qi

The quantity −Sjk(p, q) represents the net load in the subtree
Tj and is a lower bound on the real and reactive sending-end
power Sjk on branch (j, k) ∈ Ẽ. It is a linear approximation
in that Sjk equals −Sjk(p, q) plus the real and reactive losses
on the line j → k and those in Tk. Let Pj be the unique path
from bus 1 to bus j. Let a11 := 1, a21 := 0, a31 := 0, a41 := 1
and define for i = 2, . . . , N :

a1i :=
∏

(j,k)∈Pi

1−
2rjk

[
P lin
jk (p)

]+
vk


a2i :=

∑
(j,k)∈Pi

2rjk

[
Qlin
jk(q)

]+
vk

a3i :=
∑

(j,k)∈Pi

2xjk

[
P lin
jk (p)

]+
vk

a4i :=
∏

(j,k)∈Pi

1−
2xjk

[
Qlin
jk(q)

]+
vk


Consider the condition:

A4: a1jrjk > a2jxjk, a3jrjk < a4jxjk for all j → k ∈ Ẽ.

The following result is proved in [54].

Theorem 14 ([54]): Suppose A3–A4 hold. If vj = ∞, j ∈
N \ {1}, then OPF-socp is exact.

We make three remarks. First a variety of different sufficient
conditions for the exactness of OPF-socp for radial networks
have been proved in [61]. The condition A4 in Theorem 14
includes them as special cases. The set of sufficient conditions
in [61] has the following simple interpretation: OPF-socp is
exact provided either there are no reverse power flows in the
network, or if the r/x ratios on all lines are equal, or if
the r/x ratios increase in the downstream direction from the
substation to the leaves then there are no reverse real power
flows, or if the r/x ratios decrease in the downstream direction
then there are no reverse reactive power flows. Second the
condition A4 seems very mild and is satisfied by several test
systems by a large margin [61], [54]. Finally the condition
vj = ∞ in Theorem 14 can be replaced by a finite upper
limit vj but imposing vj also on a linear function of the
power injections (p, q) that represents an approximation to
the voltage magnitudes. This suggests solving a modified OPF
problem with this additional constraint on (p, q) [54]. It seems
from several test systems that this modification is small, but
guarantees that all the constraints on injections (p, q) as well
as on voltage magnitudes v are met and that OPF-socp is exact
with respect to the modified OPF problem.

The sufficient condition for the exactness of OPF-socp, proved
in [62], [63], replaces A4 with a set of conditions on the r/x
ratios in the network. Define the cumulative resistance and
reactance from node i to node k as:

Rik :=
∑

(j1,j2)∈Pik

rj1j2

Xik :=
∑

(j1,j2)∈Pik

xj1j2

Consider the condition:

A5: For each edge (k, l) ∈ Ẽ, if rkl

xkl
≥ R0k

X0k
then for all edges

(i, j) ∈ Pk

vi > 2P lin
ij (p)

(
rkl
xkl

X0k −Rik
)

+ 2Qlin
ij (q)X0i

otherwise for all edges (i, j) ∈ Pk

vi > 2P lin
ij (p)R0i + 2Qlin

ij (q)

(
xkl
rkl

R0k −Xik

)
Theorem 15: [ [62], [63] ] Suppose A3, A5 hold. If vj =∞,
j ∈ N \ {1}, then OPF-socp is exact.

While Theorem 14 is proved by considering the (primal)
problem OPF-socp, Theorem 15 is proved by studying its
Lagrangian dual.

Exact relaxation: DC mesh

In this subsection we consider purely resistive network, i.e.,
the impedance/admittance zjk = 1/yjk = rjk, the power
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injections sj = pj , and the voltages Vj are all real. The
constraint (35) should be replaced by

0 <
√
vj ≤ Vj ≤

√
vj

In particular Vj > 0 for all j ∈ N .

We can therefore view DC voltages as complex quantities with
zero phase angles Vj =

√
vje

i0. We have from (32a)–(32b)

V 2
j − rjkPjk = VjVk > 0

This implies that βjk(x) defined in (40) are zero for any
x ∈ Xnc2 . Hence (41) is always satisfied with θ(x) = 0 and
OPF-socp is exact if every optimal solution x∗ in X+

2 attains
equality in (43). Theorem 1 of [60] then implies the following
result.

Theorem 16: Suppose A3 holds. If pcj = qcj = ∞, j ∈ N ,
then OPF-socp is exact.

Exact relaxation: AC mesh

For general AC networks a solution x ∈ Xnc2 of OPF-nc may
not satisfy (41) and therefore cannot be mapped to a solution
of OPF. It is proved in [60] however that if there are phase
shifters in the network then any solution x ∈ Xnc2 becomes
implementable, as we now explain. The use of phase shifters
to convexify AC mesh networks has also been observed in
[47] for the bus injection model.

A phase shifter can be a traditional transformer or a FACTS
(Flexible AC Transmission Systems) device. We consider an
idealized phase shifter that only shifts the phase angles of
the sending-end voltage and current across a line, and has no
impedance nor limits on the shifted angles. As before let Vi
denote the sending-end voltage. Define Iij to be the sending-
end current leaving node i towards node j. Let k be the point
between the phase shifter φij and line impedance zij . Let
Vk and Ik be the voltage at k and the current from k to
j respectively. Then the effect of an idealized phase shifter,
parametrized by φji, is summarized by the following modeling
assumption:

Vk = Vi e
iφij and Ik = Iij e

iφij

The power transferred from nodes i to j is still (defined to
be) Sij := ViI

∗
ij which, as expected, is equal to the power

VkI
∗
k from nodes k to j since the phase shifter is assumed

to be lossless. Applying Ohm’s law across zij , we define the
branch flow model with phase shifters as the following set of
equations:

Iij = yij
(
Vi − Vj e−iφij

)
(47a)

Sij = ViI
∗
ij (47b)

sj =
∑
k:j→k

Sjk −
∑
i:i→j

(
Sij − zij |Iij |2

)
(47c)

Without phase shifters (φij = 0), (47) reduces to the branch
flow model (32).

The inclusion of phase shifters modifies the network and
enlargers the solution set of the (new) branch flow equations.
Formally, let

X :=
{
x̃ ∈ Cn+2m | x̃ solves (47a) for some φ,

(47b), (34), (35)
}

Unless otherwise specified, all angles should be interpreted
as being modulo 2π and in (−π, π]. Hence we are primarily
interested in φ ∈ (−π, π]m. For any spanning tree T of G,
let “φ ∈ T⊥” be the shorthand for “φij = 0 for all (i, j) ∈
T ”, i.e., φ involves only phase shifters in branches not in the
spanning tree T . Define

XT :=
{
x̃ ∈ Cn+2m|x̃ solves (47a) for some φ ∈ T⊥,

(47b), (34), (35)
}

Since (47) reduces to the branch flow model when φ = 0,
X ⊆ XT ⊆ X.

Recall the problem OPF (37) and OPF-nc. Define optimization
problem where there is a phase shifter on every line in the
network:
OPF-ps:

min
x̃,φ

C(x) subject to x̃ ∈ X

and the problem where, given any spanning tree T , there are
phase shifters only outside T :
OPF-ps(T):

min
x̃,φ

C(x) subject to x̃ ∈ XT , φ ∈ T⊥

Let the optimal values of OPF, OPF-nc, OPF-ps, and OPF-
ps(T) be C∗, Cnc, Cps, and CT respectively. The following
result is from [60]. It implies that if an optimal solution x∗ of
OPF-socp attains equality in (43) then x∗ can be implemented
by an appropriate choice of phase shifter angles φ. Such an
x∗ solves the problem OPF-nc. Moreover this benefit can be
attained with phase shifters only outside an arbitrary spanning
tree T of G.

Theorem 17 ([60]): Given any spanning tree T of G:

1) X = X = XT .
2) C∗ ≥ Cnc = Cps = CT .

Equivalence of bus injection and branch flow models

We now establish the equivalence between the bus injection
model and the branch flow model and their relaxations.

Theorem 18 ([44], [45]): W2 ≡ X2 and W+
2 ≡ X+

2 .

Corollary 4 establishes a bijection between W2 and the fea-
sible set V of OPF in the bus injection model. Theorem 12
implies a bijection between X2 and the feasible set X of OPF
in the branch flow model. Theorem 18 hence implies that there
is a bijection between the feasible sets V and X of OPF in the
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bus injection model and the branch flow model respectively.
It is in this sense that these two models are equivalent.

The bijection between these two models allows many results
to be formulated and proved in either model.
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