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Abstract

This paper addresses the problem faced by a distribution
system operator (DSO) when planning the operation of a
network in the short-term. The problem is formulated in the
context of high penetration of renewable energy sources (RES)
and distributed generation (DG), and when flexible demand is
available. The problem is expressed as a sequential decision-
making problem under uncertainty, where, in the first stage, the
DSO has to decide whether or not to reserve the availability
of flexible demand, and, in the subsequent stages, can curtail
the generation and modulate the available flexible loads. We
analyze the relevance of this formulation on a small test
system, discuss the assumptions made, compare our approach
to related work, and indicate further research directions.

Introduction

In Europe, concern about the environmental impact of the
electricity industry is currently driving the growth of renewable
electricity generation through a number of financial support
mechanisms [1]. Such incentives have resulted in the on-going
installation of wind and solar power generation resources at the
distribution level of the electricity network. This development
calls for evolution of distribution network planning and opera-
tional strategies, in order to accommodate the energy produced
by such DG resources.

The dominant doctrine for the distribution network planning
and operation has been the fit and forget approach [2]. Under
this approach, adequate investments in network components
(i.e., lines, cables, transformers, etc.) must be made in order
to always avoid congestion and voltage problems. To that end,
network planning is made with respect to a set of critical
scenarios consisting of DG production and demand levels. In
this manner, sufficient operational margins are always ensured
[3]. Nevertheless, with the rapid growth of DG resources, the
preservation of such conservative margins comes at continu-
ously increasing network reinforcement costs.

In order to avoid potentially prohibitive network reinforcement
costs, several active network management (ANM) strategies
have recently been proposed as alternatives to the fit and forget
approach. The principle of ANM is to address congestion

and voltage issues via short-term decision-making policies
[2], developed on the basis of the optimal power flow (OPF)
problem formulation [4]. Liew and Strbac [5] considered
a deterministic problem formulation with the objective of
minimizing the market value of the curtailed DG energy
production. Dolan et al. [6] developed a deterministic, OPF-
based adaptation of the ‘last-in, first-off’ operating practice. A
multi-period framework has been considered to account for the
effects of the variability of renewable DG resources [7], [8],
[9]. In this context, the problem of maximizing the utilization
of the available DG inflow has been addressed [7], as well as
the minimization of the energy losses in the electrical network
[8]. The integration of advanced network constraints, including
fault levels and N-1 security, has been established within this
multi-period framework [9].

In these references, ANM schemes maintain the system within
operational limits in a quasi real-time by relying on the cur-
tailment of wind or solar generation. Curtailment of renewable
energy may, however, be very controversial on an environmen-
tal point of view and should probably be considered as a last
resort. In that mindset, it would be worth investigating ANM
schemes that could also exploit the flexibility of the load, so
as to decrease the reliance on generation curtailment. Let us
consider a typical case where, due to a high production of
renewable energy, the distribution network sends an amount
of power to the transmission network that creates congestion
at the MV/HV transformer. By asking flexible loads of the
distribution network (DN) to increase their consumption at
that time, the congestion could potentially be relieved without
having to rely on renewable generation curtailment. Well-
known examples of flexible loads are electric heaters, boilers,
and electric car batteries. It is worth noting that exploiting
flexible loads within an ANM scheme comes with several
challenges. One such challenge is that modulating a flexible
load at one time is often going to influence its modulation
range at subsequent times. This is because flexible loads are
often constrained to consume a specific amount of energy over
a certain duration. In the above example, this would imply
that after increasing the consumption of the flexible loads
during a certain time period, the DSO would be constrained
to later decrease their consumption, which may significantly
aggravate congestion. In this context, it is therefore impor-
tant for a DSO not to take myopic decisions, but to make
decisions by planning over a relevant time horizon. Due to
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the uncertainty of the future power injections from renewable
sources relying on natural phenomena (wind, sun, etc.) and of
the power consumption of the loads, this would necessarily
imply for the DSO to implement ANM scheme able to plan
adequately control actions under uncertainty, which may be
very challenging.

In this paper, we consider that the DSO can rely on both
generation curtailment and load modulation for the active
management of the network. We focus on a specific setting
where the DSO can procure the right to control the demand
pattern of the flexible loads, in exchange for an availability
fee. We also assume that the DSO has to pay a fee per MWh
of energy curtailed, and that the fee depends on the market
price of electricity at the time of curtailment. In this context,
we discuss the way the DSO should plan the control actions
to operate safely the network at minimal cost. In the following
section, we describe the main characteristics of the ANM
problem. Following this, we formalize the problem as an op-
timal sequential decision-making problem under uncertainty,
and discuss resolution strategies. The paper concludes with
simulation results obtained on a six bus test system. These
results show that proper management of the uncertainty can
be very beneficial.

Problem description

We focus on the problem faced by a DSO that aims at main-
taining the network infrastructure within operational limits
over a one day horizon. We consider the possibility that the
DSO can impose power curtailment instructions on the DG
resources, in exchange for financial compensation. From the
alternative payment structures outlined in [10], we adopt a
scheme where the per unit compensation is defined as the
electricity market price for the curtailment period.

In addition, we account for the possibility for the DSO to
procure the right to control the demand pattern of the flexible
loads in exchange for an availability fee. Unlike non flexible
loads, we consider that a load participating in this flexibility
market must be able to precisely follow both the instructed
modulations if the flexibility offer is selected by the DSO,
or the baseline demand profile, if this option is not selected.
There is therefore no uncertainty introduced by these loads.
In summary, we characterize the flexible operating region of
such loads through the following features:

• A baseline demand profile, to be followed with certainty
unless instructed by the DSO.

• Upward and downward demand modification limits per
period.

• A net energy balance requirement, so that any instruction
by the DSO should not modify the net energy volume
consumed by a flexible load over the optimization horizon,
with respect to the baseline profile.

The time horizon covered in this problem is accounted by
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Fig. 1: Decision framework.

optimizing the operation of the system over a set of t ∈
[1, T ] discrete periods. The decision framework illustrated in
Figure 1 consists of:

• An ex-ante stage, in which the provision of load flexibility
is settled, which can coincide with the termination of the
usual day-ahead trading process.

• A series of recourse opportunities, at the start of every
market period, during which the DSO can rely to submit
curtailment orders.

Finally, we have a set of k ∈ [0, T ] decision stages. At the
ex-ante decision stage (k = 0), the energy inflow from the
DG units and the demand of non-flexible loads are uncertain
for all the periods within the optimization horizon t ∈ [1, T ].
Moreover, at each recourse stage k ∈ [1, T ], these quantities
are assumed to be known with certainty for periods t ∈ [1, k]
but are uncertain for the subsequent time interval t ∈ [k+1, T ].
Within each period, the behavior of the network is modeled
by steady-state AC power flow equations, to allow us to state
operational limits on voltage, current, and power.

Sequential decision-making under uncertainty

We gradually define the elements of an optimal sequential
decision-making problem, and then enrich the problem by
modeling the uncertainty explicitly, to allow us to state the
detailed formulation of the targeted application in the next
section.

Optimal sequential decision-making

We place ourselves in a setting where we want to control
the evolution of a system over a time horizon discretized
in T time steps. Sequential decision-making problems arise
when the decisions taken before the time t < T influence
the decisions available between times t and T . Therefore,
the problem cannot be decomposed into a sequence of T
independent problems.

Let x ∈ X be the state variable, that is the vector describing
the system, and u ∈ U(x) ⊂ U the vector describing a
decision, or control action, which can be taken to modify the
state x. By definition, the state contains enough information
so that knowing the control action at time t and the state at the
previous period, respectively ut and xt−1, it is always possible
to compute xt, ∀t ∈ {1, 2, ..., T}. In other words, the evolution
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Fig. 2: States and control actions.

of the system is guided by the function

f : X × U → X

such that
xt = f(xt−1, ut).

This is illustrated schematically in Figure 2. In our specific
framework, given that the initial decision stage does not
coincide with a specific period, we adapt the previous notation
for x1 and introduce f1 : U0 × U → X , to obtain

x1 = f1(u0, u1)

xt = f(xt−1, ut),∀t ∈ {2, ..., T}

A sequence of control actions (u0, u1, u2, ..., uT ) is admissible
if x stays within X for t ∈ {1, 2, ..., T}. To ease notations, we
denote (u0, u1, u2, ..., ut) by u[t] and (x1, x2, ..., xt) by x[t]

and pose T = {2, 3, ..., T}, x = x[T ], u = u[T ]. To guide the
choice of a sequence of control actions from all the admissible
sequences, we need to define an objective function

J : X T × U0 × UT → R.

The optimal sequential decision-making problem can then be
summarized as

min
x,u

J(x,u) (1)

s.t. x1 = f(u0, u1) (2)
xt = f1(xt−1, ut), ∀t ∈ T (3)
xt ∈ Xt, ∀t ∈ {1} ∪ T (4)
ut ∈ Ut(xt−1), ∀t ∈ T (5)
u1 ∈ Ut(u0) (6)
u0 ∈ U0 (7)

In this work, we consider that u contains generation cur-
tailment and flexible load modulation decisions and that x
contains the flexibility availability indicator and the energy
already supplied to each flexible load. One exception is that u0
only contains flexibility provision decisions. All the variables
describing the electrical state of the system are also included in
x. As we consider steady state operation of the electrical sys-
tem, these variables are time independent knowing the energy
already supplied to each flexible load. Hence, the transition
function f propagates the flexibility availability indicator and
accumulates the energy supplied to each flexible load, whereas
x ∈ X ensures that the power flow equations and operational
limits are satisfied. Finally, J(x,u) is the sum of curtailment
and flexibility provision costs, and is decomposable by period.
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Fig. 3: States, control actions and uncertainty.

Handling uncertainty

Many problems can be formulated as computing an optimal
sequence of decisions over a time horizon tarnished with
uncertainty, and allowing a series of recourse opportunities
to adapt the sequence of decisions to the outcome of the
random process representing the uncertainty. One of the first
power system applications where uncertainty was explicitly
considered was the unit commitment problem [11]. In the
mathematical programming community, this type of problem
is referred to as a multi-stage stochastic program (MSP).
A classical way to formulate a MSP is to optimize the
expectation of an objective function of several variables over
an uncertainty set of the parameters, the variables being
required to satisfy constraints for all possible realizations of
the uncertain parameters, and to impose the structure of the
recourse opportunities. In doing so, control actions are taken
so as to hedge against the possible evolutions of the exogenous
variables of the system.

Let ξ be a stochastic process defined on the probability space
(Ω,F,P). ξt is a realization of ξ at time t ∈ {1, 2, ..., T}
and the notation ξ[t] represents the sequence (ξ1, ..., ξt). We
now consider that the evolution of the system as well as the
control actions are functions of those exogenous variables.
This is expressed by xt(ξ[t]) and ut(ξ[t]), and is illustrated
schematically in Figure 3. The optimal sequential decision-
making problem (1)–(7) can be adapted to handle uncertainty
as follows:

min
x(ξ[T ])
u(ξ[T ])

Eξ[T ]

{
J(x(ξ[T ]),u(ξ[T ]), ξ[T ])

}
(8)

s.t. x1(ξ1) = f1(u0, u1(ξ1), ξ1) (9)
u0 ∈ U0 (10)
u1(ξ1) ∈ Ut(u0, ξ1) (11)
∀t ∈ T ,
xt(ξ[t]) = f(xt−1(ξ[t−1]), ut(ξ[t]), ξt) (12)
ut(ξ[t]) ∈ Ut(xt−1(ξ[t−1])) (13)
∀t ∈ {1} ∪ T ,
xt(ξ[t]) ∈ Xt (14)

As the process ξ[T ] does not have a finite number of realiza-
tions in the applications that we target, this formulation leads
to an infinite dimensional optimization problem [12]. We now
present a common method of approximating this problem.
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Scenario tree based approximation

We approximate the random process with a discrete dis-
tribution and a finite support in order to build scenarios
(Figure 4a) of possible realizations of the random process,
and to optimize the objective function only for the realizations
of the random process represented by these scenarios. Non-
anticipativity constraints are imposed to enforce the structure
of the recourse opportunities: for a given recourse opportunity,
all decisions related to scenarios with a common past must be
equal. Each recourse opportunity is called a stage. To facilitate
the representation of these constraints, the scenarios are often
clustered in a scenario tree as shown in Figure 4b. The depth

stage
0 1 2

ξ
(1)
[T ] (x(1),u(1))

ξ
(2)
[T ] (x(2),u(2))

ξ
(3)
[T ] (x(3),u(3))
ξ
(4)
[T ] (x(4),u(4))

(a) Representation of different possible sequences of realiza-
tions thanks to scenarios. A sequence of decisions corresponds
to each scenario.

stage
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(x2, u2, ξ2)
(2)

(x1, u1, ξ1)
(3)

(x2, u2, ξ2)
(3)

(b) Hierarchical clustering into a scenario tree. A unique decision
corresponds to each node of the tree.

Fig. 4: Scenarios and stages

of the tree constructed by this approach is equal to T . With
the exception of the root node, which corresponds to the day-
ahead, each node of the tree corresponds to a realization of the
random process at a given stage and has at least one son for
t = 1, ..., T −1. A scenario contains successive realizations of
the random variable, and is represented in the tree by going
from the root node and taking one son at each subsequent level
down to the final level. Scenario k is denoted by ξ

(k)
[T ] with

k ∈ {1, 2, ...,K} where K is the number of leaves in the tree.
Each node n ∈ {1, 2, ..., N}, where N is the total number of
nodes in the tree truncated at the root node, has an associated
occurrence probability wn and stage t. The node n = 0
corresponds to the root node. We use subscript n to reference
state, control actions and exogenous variables at node n of the
tree, and use subscript [n] to refer to the sequence of states,
control actions and exogenous variables from the root of the
scenario tree to node n. Using this notation, the scenario tree

based approximation of problem (8)–(14) is

min
x,u

K∑
k=1

wkJ(x(k),u(k), ξ
(k)
[T ] ) (15)

s.t. xn = f(u0, un),∀n ∈ C(0) (16)
u0 ∈ U0 (17)
xn′ = f(xn, un′ , ξ[n′]) ∀n′ ∈ C(n),∀n ∈ N (18)
xn ∈ Xn,∀n ∈ N (19)
un′ ∈ Un′(xn),∀n′ ∈ C(n),∀n ∈ N (20)

where wk is the probability of the terminal node in scenario k,
C(n) is the set of successors of node n, and N = {1, 2, ..., N}
is the set of nodes of the scenario tree truncated at its root
node.

Detailed optimization model

This section details the components of the compact formula-
tion presented in problem (15)–(20).

Network topology

The network is represented by a graph, where the set of
vertices B represents the electrical buses and the set of edges
L contains the links connecting buses. A nominal voltage level
is associated with each bus. In this work we focus on the MV
level network. Several devices can be connected to each bus.
We distinguish three types of devices: generators, static loads,
and flexible loads. These devices represent either a single
physical element, such as a wind turbine, or the aggregation of
elements of the same type connected to an individual bus, such
as residential loads at the low voltage (LV) level. G, S and F
represent the set of generators, static loads, and flexible loads,
respectively. G(b), S(b) and F(b) represent the devices of each
type connected to bus b, respectively. Links are transformers,
lines or cables. No special notation is required to distinguish
different types of links, as these are directly translated into the
values of the admittance matrix.

Parameters

Let Pg,n ≥ 0 be the injection of generator g and Ps,n ≥
0 and Pf,n ≥ 0 the off-takes of the static and flexible
loads, respectively. Off-takes of each flexible load are known
with certainty and are characterized by the time-dependent
minimum, P f,t, and maximum, P f,t, power levels1. On the
other hand, wind and solar power injections and off-takes of
static loads are considered uncertain. In addition, we consider
that all devices operate at constant power factor cosφd and
their reactive power injections are thus defined by:

Qd,n = tanφdPd,n,∀d ∈ G ∪ S ∪ F .

All electrical parameters are gathered in the admittance ma-

1For simplicity, flexibility bids cover the whole time horizon. Removing
this restriction does not change the nature of the optimization problem.
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trix2 Y ∈ C|B|×|B|. Operational limits are V b and V b, the
minimum and maximum voltage magnitude, respectively, and
I l, the maximum current.

The cost of flexibility availability and curtailment are Cflexf ,
and Ccurtg,t , respectively. At any decision stage k ∈ [1, T ], the
cost would be uncertain, given that the curtailed energy would
have to be compensated at the real-time market price.

State variables

The state variable is

x =
(
e>,y>,p>,q>,V>

)
where

• e ∈ R|F| is the vector of the energy status of flexible loads,
• y ∈ {0, 1}|F| is the vector of availability indicators of

flexible loads,
• p ∈ R|B| is the active power injection vector,
• q ∈ R|B| is the reactive power injection vector,
• V ∈ C|B| is the bus voltage vector (Vb = vbe

jφb ).

The slack bus is fixed at the high voltage level side of
the transformer connecting the distribution network to the
transmission network. By convention we refer to this bus as
bus 0, and impose v0 = 1 p.u. and φ0 = 0.

Feasible states

To be feasible the state xn must reside within the set Xn
defined by:

• ∀b ∈ B, the active and reactive power definition

pb,n + jqb,n = Vb,n
∑
b′∈B

Y ∗b,b′V
∗
b′,n

• ∀b ∈ B, the voltage limits

V b ≤ vb,n ≤ V b

• ∀l ∈ L, the current limits (l connects buses b and b′)

|Ybb′(Vb,n − Vb′,n)| ≤ I l,

• if n is a leaf of the tree, the energy constraint of flexible
orders

ef,n =
∑

k∈scenario(n)
Pf,k∆t, ∀f ∈ F .

Control actions

The first stage decision u0 encompasses the flexibility pro-
curement decisions, uf,0, ∀f ∈ F . For stages 1 to T the
control variable is u = (c,m), where c ∈ R|G| is the vector of
curtailment instructions for the generation units and m ∈ R|F|
is the vector of flexible load power modulations.

2The operator | · | applied to a set returns its cardinality.

Feasible control actions

The control actions un′ are restricted to the set Un′(xn), where
n is the parent node of n′. This set is defined by

• ∀g ∈ G, the generator curtailment limits

cg,n′ ∈ [0, 1]

• ∀f ∈ F , the modulation limits of the flexible loads

mf,n′ ∈
[
P f,n′ − Pf,n′

Pf,n′
yf,n,

P f,n′ − Pf,n′

Pf,n′
yf,n

]
.

For the first stage control action u0, the flexibility provision
variables are binary: u0,f ∈ {0, 1}, ∀f ∈ F .

Transition function

The transitions xn′ = f(xn, un′) are defined by, ∀n′ ∈ C(n)
and ∀n ∈ N \ {0},

• the evolution of the energy provided to flexible loads

ef,n′ = ef,n + (1 +mf,n′)Pf,n′∆t, ∀f ∈ F

where ∆t is the period duration
• the propagation of the load flexibility availability indicator

yf,n′ = yf,n, ∀f ∈ F

• the net active and reactive power injections, ∀b ∈ B

pb,n′ =
∑
g∈G(b)

cg,n′Pg,n′ (21)

−
∑
s∈S(b)

Ps,n′ −
∑

f∈F(b)

(1 +mf,n′)Pf,n′

qb,n′ =
∑
g∈G(b)

cg,n′Qg,n′ (22)

−
∑
s∈S(b)

Qs,n′ −
∑

f∈F(b)

(1 +mf,n′)Qf,n′

Finally, ∀n ∈ C(0), we have simply yf,n = uf,0.

Objective function

The first term of the objective function corresponds to the
cost of procuring the availability of flexible loads in advance.
The second term expresses the cost of the forthcoming energy
curtailment decisions.

J(x,u) =
∑
f∈F

yfC
flex
f +

∑
n∈N

wn
∑
g∈G

(1− cg,n)Pg,nC
curt
g,t .

Nature of the optimization problem

The presence of flexibility procurement decisions and AC
power flow equations result in a mixed integer and non-linear
program (MINLP). Furthermore, the dependency between pe-
riods and the explicit modeling of uncertainty dramatically
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increase the dimensions of the problem. In the following
sections, we describe results obtained on a small test system,
with a short time horizon and a moderate number of scenarios.
In the concluding section, we discuss pitfalls and avenues for
solving realistic scale instances.

Case Study

We analyze issues arising at the MV level in some Belgian
distribution systems (Figure 5). Often, wind-farms are directly
connected to the HV/MV transformer, as modeled in our test
system by the generator connected to bus 2. Power off-takes
and injections induced by residential consumers are aggregated
at bus 4 by a load and a generator representing the total
production of PV panels. Finally, the load connected to bus 5
represents an industrial consumer.

HV

MV       Bus 1

Bus 3

Bus 2 Bus 4 Bus 5

Solar
aggregated

Wind

Residential
aggregated Industrial

Fig. 5: Model of distribution network used for the case study.

The cumulative capacity of DG units exceeds the capacity
of the HV/MV transformer. This leads to congestion issues
when, within the distribution network, high generation and
low consumption arise simultaneously. Voltage rises can also
be induced in the downstream nodes because the power flow
is mainly directed towards the transformer. On the other hand,
when the local generation level is low and loads consumption
is high, the power flow is inverted, and this can lead to
undervoltage problems.

The optimization horizon covers three periods. The procure-
ment of load flexibility occurs before the first period. The
stochastic process associated with this time horizon relates to
the uncertainty on the production of renewable generators. It is
modeled through two random variablesW and S which define
the efficiency factors of wind and PV generators, respectively
(cf. Figure 6a). The actual output level of a DG unit is
thus its maximum capacity scaled by the associated efficiency
factor. Figure 6a shows the scenario tree used for this case
study, comprising eight possible scenarios. As both random
variables model natural phenomena (wind level and sunshine),
we expect uncertainty to increase as we move away from
real-time. This is modeled by an increase in the standard
deviation associated with the random process, as shown on
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(a) Scenario tree used for the case study. The nodes show the values of
the random variables and the label on the edges define the transition
probabilities between nodes.
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Fig. 6: Representation of uncertainty.

Figure 6b. Unlike renewable generators, the two loads have
peak consumption during the first two periods. However,
both can provide flexibility. The baseline demand profile and
the upward and downward modulation limits are shown in
Figure 7. We define the flexibility price, pf , such that the
flexibility fees at buses 4 (aggregated residential load) and
5 (industrial load) equal pf and 1.5pf , respectively.

We compare two sequential decision-making policies:

• the mean scenario approach (MSA): the procurement of
flexibility is first determined by optimizing over the mean
scenario. The mean scenario is updated at each recourse
stage, and we solve an optimization problem for each stage
while following the nodes defining the scenario in the tree
and fixing the variables related to former periods (i.e.,
ancestor nodes). This method is evaluated for each scenario
of the case study.

• the scenario tree approach (STA): this policy solves the
problem by optimizing over the whole scenario tree, as
described in formulation (15)–(20). Load flexibility is also
evaluated using this stochastic formulation.
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Fig. 7: Flexible loads. The white area is delimited by P and
P , and the black line is the baseline consumption P .

Experimental results

We first illustrate for one scenario the control actions taken by
both approaches. The approaches are then compared in terms
of expected cost and variability of cost. Finally, we show the
sensitivity of the first stage and of curtailment decisions to the
price of flexibility.

Scenario analysis

The selected scenario is presented in Figure 8. Without any
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Fig. 7: Flexible loads, with P , P and P represented respec-
tively by dashed, continuous and dotted lines.
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Fig. 8: Selected scenario

Scenario analysis

Interest of the stochastic model

The first thing to notice from the results presented in Table ??
is that the cost of operation achieved by STA is smaller than
the one achieved with MSA. In addition to reaching a better
objective value, STA also ensures less variables costs over the
set of scenarios.

E{cost} max cost min cost std. dev.
MSA 73$ 770$ 0$ 174$
STA 46$ 379$ 30$ 72$

TABLE I: Results for both optimization techniques over all
the scenarios. The best value of each column is in bold.

If MSA is able to reach a cost of zero for (at least) one
scenario, it is to the expense of a subset of the possible
scenarios. The sub-optimality of MSA can quite easily be
understood :

• The decision of buying DSM offers in day-ahead is not
made as a compromise given the credible futures but only
determined through a fixed scenario.

• Similarly, the modulation of the loads is not spread over
all the periods by taking into account the set of possible
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Fig. 9: Flexibility cost analysis.

scenarios.

In the considered case study, the mean scenario technique
make the decision not to buy flexibility while the tree-based
approach only buy the flexibility of the residential load.

Interest of loads’ flexibility

Highlight ability to detect whether DSM is interesting as
function of bid prices vs. issues in the system.

cf. Figure ?? !! To update with new case study !!

Implementation and algorithmic details

It is not easy to find a solver that can manage this MINLP, even
on such a small test system. We made several experiments with
SCIP [?] (with and without IPOPT to solve node relaxations),
IPOPT [?] and Knitro [?]. Finally, we decided to implement a
custom branch-and-bound algorithm that can use both IPOPT
and Knitro to solve the NLP node relaxations. We observed
that solutions of the optimization programs were insensitive
to the choice of the NLP solver.

Conclusion and Future Work

This paper proposes a novel formulation of the ANM problem
as a problem of optimal sequential decision-making under
uncertainty. We showed on a small case study that our formu-
lation is capable of efficiently tackling the problem in question
by explicitly accounting for uncertainty and allowing for the
utilization of the demand-side operational flexibility. As the
scope of this paper is to serve as a proof-of-concept, the next
step of this research is to enable the application of this proposal
on realistic systems.

The major obstacles to this are the lack of information
available on the demand side, the lack of legal and technical

Fig. 8: Selected scenario.

action from the DSO, two operational limits would be violated
during the third period (Figure 9):

• the magnitude of the current in the transformer would
exceed the 10 p.u. limit (11.53 p.u.);

• an over-voltage would appear at bus 4 (1.054 p.u. for a
maximum of 1.05 p.u.).

The MSA does not procure flexibility while the STA only
procures the flexibility of the residential load. Thus, for the
MSA, maintaining the system within the operational margins
can only be ensured through curtailment orders: power from
bus 2 is curtailed, at a cost of $224. On the other hand, as
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Fig. 9: Operational limit violations are located at the red-
dashed elements.

the STA procures flexibility from the load at bus 4 at a cost
of $30, curtailment is not required to keep the system within
acceptable bounds for this scenario. The consumption of the
load instructed by the DSO is presented in Figure 10.
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Fig. 10: Consumption pattern instructed by the DSO (line),
and baseline consumption (dashed line).

Features of the stochastic model

The expected cost of operation achieved over all the scenarios
for both the MSA and the STA, as well as the maximum
and minimum costs among possible scenarios, are presented in
Table I. The smallest expected cost of operation was achieved
by the STA. In addition, the STA also ensures a smaller
variability of the cost over the set of scenarios. On the contrary,
as the MSA overfits its decisions to the mean scenario, it
achieves zero cost on scenarios close to the mean scenario,
but this is at the expense of large curtailment costs on several
possible scenarios far from the mean.

E{cost} max cost min cost std. dev.
MSA 73$ 770$ 0$ 174$
STA 46$ 379$ 30$ 72$

TABLE I: Results for the MSA and the STA over all the
scenarios (best value in bold, column-wise).
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Features of load flexibility

We now analyze the impact of load flexibility in terms of
curtailed power from DG units and cost of operation. Figure 11
shows the evolution of the expected percentage of curtailed
power, the number of activated flexible loads and the expected
cost of operation, when the flexibility price pf increases and
the curtailment prices remain constant. We observe that a very
low flexibility price induces the activation of both loads, and
the DSO can avoid issuing curtailment orders. At a given
threshold, the flexibility fee of the industrial load (bus 5)
becomes too high and only one load is activated. With only one
flexible load, the DSO may have to curtail power, depending
on the scenario, which thus increases the expected cost. When
the price of flexibility becomes too high, the only action taken
by the DSO is generation curtailment.
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Fig. 11: Load flexibility cost analysis.

Hence, if the load flexibility price and curtailment prices are
competitive, a DSO can reduce both the cost of operation and
the amount of power curtailed from the distributed generators.

Implementation and algorithmic details

It is not easy to find off-the-shelf solvers that can manage
this MINLP, even on such a small test system. We conducted
several experiments with SCIP [13] (with and without IPOPT
[14] to solve node relaxations) and Knitro [15]. Finally, we
decided to implement a custom branch-and-bound algorithm
that can use both IPOPT and Knitro to solve the NLP node
relaxations. We observed that solutions of the optimization
programs were insensitive to the choice of the NLP solver.

Conclusions and future work

This paper proposes a novel formulation of the ANM problem
that allows utilization of the demand-side operational flexibil-
ity. We highlighted both the sequential and the uncertain nature
of this ANM problem and addressed it as an optimal sequential
decision-making problem under uncertainty. As the scope of
this paper is to serve as a proof-of-concept, we benchmarked
the proposed approach on a small case study, and showed that
it is critical to explicitly take into account the uncertainty to
efficiently operate demand-side flexibility.

The model governing the interactions between the stakehold-
ers of the distribution system must be carefully considered.
We have presented one particular flexibility model, where
availability is procured one day ahead in exchange for an
availability fee, and curtailed power is remunerated at the
market price. In the next steps of this work, it would be
worth analyzing alternative models to identify the ones that
offer incentives to foster demand-side flexibility and increase
the share of renewable energy. The flexibility product that
we proposed may fit a subset of the loads, but other prod-
ucts may be required to satisfy the technical constraints of
other consumers. For example, this work could be easily
extended to tank-like models, such as the one proposed in
[16]. Furthermore, existing configurations could already enable
activation of the demand flexibility through ON/OFF signals
that actuate a relay in some domestic meters (such as day and
night meters). However, these models may necessitate more
specific information on the consumption side, and introduce
more integer variables to the optimization problem.

More or less independently of the interaction model imple-
mented, computational challenges are a barrier to the ap-
plication of this formulation to real size systems. Indeed,
the complexity of the optimization problem is simultaneously
increased by the integer variables, the non-linearity of the
power flow equations, and the high dimensionality caused
jointly by the multi-period aspect and the explicit treatment
of uncertainty. It is certainly worth considering the recent
works that propose new approaches for efficiently solving
single period OPF problems [17], [18]. Another interesting
research direction would be to develop optimization algorithms
specifically designed to tackle the complexity induced by the
scenario-tree based approach [19], [20].

In the long-term, it will also be necessary to find investment
strategies that reach the best possible trade-off between the fit-
and-forget and full ANM approaches. Assessing such a trade-
off may not be an easy task, especially since it would require
the evaluation of the cost of an ANM scheme, which may be
a difficult task. Note that this cost depends not only on the
price paid for modulating the load and the generation over
a long period of time, but also on the cost required for the
evolution of the infrastructure. Indeed, deploying these types
of approaches would require non-negligible ICT, metering and
control investments, amongst others.
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