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Abstract

Operating criteria for power systems, such as the (N — 1)-
criterion, are often based on evaluating whether the system
is vulnerable to a specific set of contingencies. Therefore,
a major part of power system security is concerned with
establishing regions in parameter space where the system
is vulnerable to specific contingencies. In this article we
exploit the possibility of using Monte Carlo simulations to
build an approximation of the region, in parameter space,
where the power system will remain stable following a given
contingency.

Introduction

Due to the increased utilization of the power grid, that has
followed upon the deregulation of electricity markets, security
considerations now play a prominent role in power system
operation [1]. There is a conflict of interest between the desire
to transfer large amounts of electric energy through the power
grid, and the requirement of secure operation where the risk
of a disturbance is small. To satisfy both objectives to the
largest possible extent an “adequate balance” between secure
operation and transfer capacity is preferable.

Maintaining a secure operation of the power system is often
considered equivalent to the system being able to withstand
each and every contingency in a list of plausible contingencies.
This requires knowledge of for what parameter levels the
system is vulnerable to different contingencies. When the list
of plausible contingencies is not too long and the system
parameters can be forecasted with a good accuracy, on-line
time-domain simulations can be used to predict whether the
system will satisfy the security criteria in the near future.
However, with the growing penetration of variable energy
sources, that make the system parameters more difficult to
predict, and the more complicated interconnections we see as
a result of meeting deregulation requirements, extensive on-
line simulations will be too computationally difficult to provide
meaningful results.

One way to make detailed analysis tractable would be to
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perform dynamic simulations off-line to predict which contin-
gencies are important to investigate during on-line operation.
Another approach, which is the one we suggest in this paper,
is to make detailed simulations off-line and try to estimate a
stability region which can then be used to steer the system
on-line. The on-line steering can be performed by, for exam-
ple, changing the production according to the solution of a
security-constrained optimal power flow (SCOPF) (see [2] for
the original work or [3], [4] for more recent versions) or a
stochastic optimal power flow (SOPF) [5], [6].

In [6] a SOPF formulation including the expected security
cost from post-contingency corrective actions, such as fast
generator rescheduling and load shedding, was given. The
problem, which we will refer to as expected security cost
stochastic optimal power flow (ESCSOPF), was formulated as:

Problem (ESCSOPF). Given o > 0 and a list of n. contin-

gencies each with probability ¢;, ¢ = 1, ..., n., of occurrence;
solve
min ;q [Ci(u, Z)] (1a)
st. S gP[min di(u,Z) <0 <a,  (Ib)
> Pl min, dy(u.2) <0

where ¢y = 1, u is a vector of controllable parameters, 7 is
a random vector of uncertain parameters, Cy(u) is the base
case operating cost, C;(u,Z) is the security cost required
to meet the mid-term stability requirements (see [7]) for
contingency ¢ = 1,...,n., and d;;(u, Z) is the distance to
the j* (j € J'®) second order approximation part of the
boundary of the region where the system retains transient
stability following contingency <.

This type of problem also appears under the name of chance
constrained optimal power flow CCOPF in the literature [8].

In order to solve this problem we need to first find a set
{Zi}je g of second order approximations that combined
give a good picture of the boundary that separates the region
where the system retains transient stability and the region
where transient stability is lost post contingency ¢, for ¢ =
1,...,n.. Our tool to obtain this will be repeated time-
domain simulations in a Monte Carlo simulation followed by
an identification of boundary points of the stable set and finally



an approximation of the boundary using a number of second
order polynomials.

Stability regions

For each contingency i, the dynamic stability region can be
seen as the intersection of two subregions, one region Dig
where the system retains transient stability, and one region
Di;r where mid-term stability properties hold (see Table 1 of

[9D.
The mid-term stability region D}y

Approximations of the boundary dDj;; of the domain Djp
have been proposed in the literature before [10]-[13]. In [11]
the closest bifurcation point from a loading point is calculated
and in [10], sensitivities of the loading margin (distance to
the mid-term stability boundary) with respect to the system
parameters are given. The use of the sensitivities can help
to determine optimal actions to either steer the system away
from instability or to make it stable again. In [12]-[15] second
order approximations of the loadability surface are derived.
In [16] a third order approximation is derived and a method
for handling the intersections of saddle-node bifurcations and
switching loadability limits is proposed.

Since much work has already been done on trying to ap-
proximate the mid-term stability boundary we will focus on
approximating the boundary of the domain where the system
remains transiently stable following a specific contingency.

The transient stability region Di

We assume that we want to investigate the post-contingency
stable region for contingency 7. To do this we first generate a
set ' = {\1,..., Ay} of points in a Monte Carlo simulation.
Let D% be the set of all points in parameter space where
the system retains transient stability after being subject to
contingency i and let T = {Ars;(1),- - > Ms;(nge)} = L' N
Dig. The set I'tg is thus the collection of points of I' for
which time-domain simulations result in transiently stable
trajectories when applying contingency ¢. Note here that the
post-contingency trajectory should include the control actions
that are normally used to save the system from loss of stability.

Assuming that the stable region is convex we could estimate
Dig with the convex hull, Conv(I'4), of I's. Note that both
I'is and Conv(I'%g) are random sets. In Fig. 1 the result of
disconnecting 60 MW of production in Generator 2 of the
WSCC 9-bus system is shown for 1000 randomly selected
values of the loads at nodes 5 and 8 while keeping a constant
load at node 6.

In the figure the green dots are cases for which the system
retained transient stability (i.e. the set I'%g is given by the green
dots) and the red dots correspond to cases where transient
stability was lost. The area contained in the polygon is the

Fig. 1. The stable domain of the WSCC 9-bus system for a 60 MW outage
in Generator 2.

convex hull Conv(I%g) of the set of green points. As we
can see, the post contingency trajectory was stable for all the
parameter values inside polygon. It thus seems like the convex
hull provides a feasible approximation in this case.

Unfortunately, we cannot assume that Dig is convex and we
might thus have that Conv(I'%g) ¢ Dig. To solve this we will

use a triangular representation of the domain Conv(I'%) and
remove triangles, if necessary, to make it fit better with Diq.

In a m-dimensional parameter space, assume that m+1 stable
points {AT%, ..., ATS, |} have been detected. If these points are
not lying in a plane, the convex hull of these points will form
a m-simplex of positive volume. The m-simplex is bounded
by m + 1 hypersurfaces and any point A within the simplex
will satisfy

n?(/\ —p1) <0

”Z@H(/\ — Pm+1) <0,

where n; and p; are the outward normal to and a point of
the i bounding hypersurface, respectively. When adding an
additional point AT 9, We can get two different situations.
Either the new point is inside the m-simplex formed by the
points {A]5,..., XI5 1} or the new point is outside the m-
simplex.

The first situation is depicted in Fig. 2 for a 2-simplex (i.e. a
triangle). As can be seen from the figure the convex hull does
not change when a new point inside the hull is discovered.
Instead the existing m-simplex is divided into a simplicial
complex with m + 1 smaller m-simplexes. Each of these
new m-simplexes are formed by taking the new point A 9
and making an m-simplex together with m points of the set
{ATS, ... AT, | }. As this can be done in m+1 different ways
we get m + 1 new (smaller) m-simplexes.

The other situation is when the new point lies outside of the
initial m-simplex. This situation is depicted in Fig. 3 for the
same 2-simplex that was used above. To form a simplicial
complex with the m + 2 points we add a number of new m-
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Fig. 2. The approximation of the domain does not change when a new stable
point is found inside the domain.

ATs;(2)
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Fig. 3. A new stable point is found outside of the first m-simplex.

simplexes, one for each bounding surface which A[S, , lies on
the outside of. If ATS, , is outside of bounding surface k, i.e.

ny (A;rr§+2 —px) >0, 2

then ATS,, and the m points of {AT5,...,AT> |} that lie in
bounding surface k are used to form a new m-simplex. In this
way we get the convex hull of the set {A\]>,... ATS ,}.

So far we have only searched for the convex hull of a set of
stable points. However, as noted above D is not necessarily
convex. Fig. 4 shows the stable and unstable points for a
short circuit at node 7 followed by a disconnection of the line
between nodes 5 and 7 in the WSCC 9-bus system. In this
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Fig. 4. A sample of Conv(I'%g) of the WSCC 9-bus system for a short

circuit at node 7 followed by a disconnection of the line between nodes 5 and
7. Green points are transiently stable and red are unstable.

figure the higher loading boundary (not shown in the figure)
is due to feasibility of the initial (pre-contingency) operating

point and the lower level is due to transient instability. As we
can see in the figure there are a number of parameter vectors
leading to transient instability within the convex hull of the
points where transient stability is retained.

In the view of this result we need to somehow update the
approximation Di of Di by removing m-simplexes so that
no parameter vectors leading to transient instability are inside

- Assume that after samphng k parameter vectors we have
bu11t the approximation D s, and the (k + 1)" sample lies

within ﬁ%sk and the corresponding time-domain simulation
gives a transiently unstable post-contingency trajectory. Then
we have to remove the smallest m-simplex that contains the
unstable point.

In Fig. 5 we see what happens when an unstable point is
encountered inside the convex hull in the example given in
Fig. 2. In this case the approximation of the stable domain is

unstable case

ATs; (1)

Fig. 5. When an unstable point inside the approximation is found we remove
the triangle that contains the point.

reduced to the two triangles labeled 1 and 2.

When all the samples are examined we should further inves-
tigate the boundary by verifying that the middle of each part
of the boundary corresponds to a stable trajectory in a time-

domain simulation.

The resulting domain is given by the condition

(n CH)T(A —pi") <0, k=1...,Nen, 3)

ma A—pt*y>0, k=1,...,Ng, (4
s ()t R @)
where nCH and pCH are the outward normals of and points

of the boundary of the convex hull, respectively, Ncp are the
number of boundary parts of the convex hull, n,lj’] and p,c
are the outward normals and points of the m + 1 bounding
surfaces of the N removed m-simplexes.

Constraint (4) only holds true if the A is inside the complex
hull and constraint (3) is only true if A is not lying within any
of the removed m-simplexes.

Fig. 6 shows the updated approximation of the transient
stability domain obtained by first removing all triangles that
contained unstable points. Each part of the resulting boundary



was then investigated by finding the middle of the boundary
part and performing a time-domain simulation to validate that
the boundary is part of the transient stability domain.

Fig. 6. The domain ﬁ%s after removing the triangles that contain unstable
points and checking the new boundary parts.

Second order approximations of the transient
stability boundary

The procedure for determining approximations of the bound-
ary 0Djg of the domain Dig is as follows:

1) Perform a Monte Carlo simulation where the transient sta-
bility of a large number of randomized parameter vectors
is investigated by time-domain simulation.

2) From the simulated points, approximate the boundary of
the stable domain.

3) Approximate this boundary using multiple second order
polynomials in the system parameters.

The two first steps have already been explained above. What
remains is to compute a number of second order polynomials
that together well approximate the boundary of the transient
stability region.

To get a good approximation of the boundary, dD%, of the
transient stability region several polynomials will often be
needed. This is illustrated in Fig. 7.

Fig. 7. Polynomial approximations of 8D%S.

Since second order polynomial approximations were suggested
earlier we need to decide vectors \Y € R™ where the
approximation has its basis, normals n¥ € R™ and curvature
tensors AY that are symmetric m X m-matrixes such that
Aln¥ = 0.

Assume that we have a prediction of future system parameters
giving the probability density function fg : R™ — R,.. To get
a good accuracy of the approximation we choose il to be the
boundary point that maximizes fg, i.e. the most probable point
of the boundary.

Now, since the boundary has not been calculated exactly,
the boundary will not be smooth and local information at
Ail is often not useful. Moreover, since A\:' was decided by
maximizing a probability density function we may expect that
Al is closer to the middle of the set than its neighbors on
the boundary. Hence, when deciding n? € R™ and A% we
should discard all other boundary points lying on a distance
< 6 from \il. The constant § > 0 should be set depending on
the accuracy (e.g. number of samples) of the initial boundary
approximation.

Once the basis point A% and § > 0 have been decided we
define

dit(M\n, A) =nT (AL —\) + %ATA)\. 5)

This means that the point A is on the inner side (in negative
direction of the outward normal n) of the codimension-one
surface defined by 3 (n, A) == {\ € R" : dj(\,n, A) = 0}
whenever d;; (A, n, A) > 0.

Let A§ be the set of all boundary points computed in step
2. The point A\’ of A} that maximized fo : R™ — R
was picked to be the basis for the first approximation. We
now remove all the points on a distance < & to A2 and
get the set Aj(\L,8) = A§ N (Bs(\i}))e, where (Bs(\))©
is the complement of the §-ball centered at \. We now want
to choose n and A, so that dij (A, n, A) > 0, VA € Aj(A\iL, ),
while having the fit as close as possible. We thus pose the
following optimization problem:

nesm-1, Aesym,, Z foNdi(Am, 4) (6)
AEA)
s.t dir(A\,n, A) >0, VA € A{(AL,6), (6b)

Note that once we have picked a n € S™ 1 = {z € R™ :
lz|| = 1}, (6) is a linear program. A heuristic way of solving
(6) would be to set 7 = (AL — ¢)/||A — || and let C be a
m x (m — 1)-matrix with basis vectors of Ln. The distance
from \ to the surface {\!! +Cx+n(a’z+1/2x Tbx) € R™ :
z,a € R™™1 b€ Sym,,_,} in the direction 7 is then

dit(\,a,b) =T (N =N +a  CTN = N)
1 . .
+§(A;1 —A)TChCT (AT — ).



If we instead of (6) solve

min > fe(Ndir (A, a,b) (Ta)

a€R™—1 beSym )
AEAY

s.t. dir(A,a,b) >0, VA € Aj(XiL,5), (7b)

m—1

and repeatedly set 72 < (7 + Ca)/||n + Ca|| and solve (7) we

get the solution to (6) as a fixed point to the algorithm with
n* =n and A* = CTb*C.

Once problem (6) has been solved we set d;i(A\) =
di1 (A, n*, A*), where (n*, A*) is the pair giving the optimal
solution to (6). It might be worthwhile here to note that (6)
is not a convex problem so having a good initial guess is
important.

Now, we pick a second number v > 0 and set A} = {\ € A} :
di1(\) > ~}. The set A? will thus consist of all points of the
boundary for which the first approximation has an accuracy
less than ~y. To compute the second part of the polynomial
approximation of the transient stability boundary we look for
the most probable point of the remaining non-covered part of
the boundary. Hence,

A2 = argmax fo(\). (8)
AEA]

Similar to computing the first approximation the second is
found by solving

min > fo(Nda(A,n, A) (%)

neSm—1, AeSym,,

AEAY
s.t. dp(\,n, A) >0, YA € AL(M\2)5), (9b)
An = 0. (9¢c)

This process is then repeated until

max feo(\)
NeA:

is sufficiently small.

Example

In this numerical example we continue working with the
WSCC 9-bus system (see Fig. 8). The contingency that we
will consider is the first one above where an outage led to the
loss of 60 MW production in the generator located at node 2.

We assume that the varying parameters are the active power
loads at nodes 5 and 8, so that A = [Pr5 Prg]. To create T’
we generate 1000 samples of a pair of independent random
variables uniformly distributed on [0, 5].

Assume that © has a Gaussian distribution with mean

e [2]

and variance

2 7 8 9 3
Gen 2 F # Gen 3
Load C
5 6
Load A i 2 i Load B
1
Gen 1

Fig. 8. The WSCC 9-bus system.

To build the boundary we will split all boundary segments
until the length (Euclidean norm) of the longest segment
is less than 0.1 p.u. For each of the new boundary points,
time-domain simulations have to be made to validate that
the point corresponds to a stable post-contingency trajectory.
Once the stability of all boundary points is validated we start
building the second order approximations. The result in the
first contingency case with parameters 6 = 0.3 and v = 0.1
is shown in Fig. 9. In the figure the blue solid polygon is the

4-

Prg

Fig. 9. The approximation of the transient stability boundary for contingency
¢=1with 6 = 0.3 and v = 0.1.

transient stability boundary approximated from the points of
the set I'. In this case the transient stability domain seems to
be convex so the convex hull of the points 'y gives the initial
approximation. From the set of boundary points we then need
three second order approximations (black solid lines) to obtain
the accuracy 7 = 0.1. The magenta arrows show the initial
guesses of the normal vectors and the black arrows are the
normal vectors obtained by the iterative procedure described
above. To get the initial guesses we used ( = mg.

To increase the accuracy of the approximations we set v =
0.05 and § = 0.2. With these values we get the approximation



shown in Fig. 10. For both figures we use a stopping criteria

Fig. 10. The approximation of the transient stability boundary for contingence
i =1 with 6 = 0.2 and v = 0.05.

based on the likelihood of the remaining boundary points that
prevents us from approximating the far off corners with an
excessive degree of accuracy. With the increased requirement
on the accuracy we see that we need a total of six second order
approximations. As expected, we thus see that increasing the
accuracy requirements leads to the use of more approxima-
tions.

Discussion

In this paper we investigated how Monte Carlo simulations
combined with time-domain simulations can be used to build
second order approximations of the transient stability bound-
ary for a given list of contingencies. These approximations can
then be combined with approximations of mid-term stability
regions and other operational regions when solving an optimal
power flow problem with chance constraints.

In order to compute the second-order approximations, we
identified the boundary points of the region in parameter
space where the system remained stable after the contingency.
The second order approximations of this boundary were then
obtained by solving a number of linear programming problems
in an iterative manner.

Possible improvements of the method include:
Sequential scenario generation

If the stability of each scenario is checked directly after the
scenario has been generated in the Monte Carlo simulation
this information can be used to update the distribution from
which we sample the future scenarios. One could, for example,
use a set of indexes to evaluate “how stable” a stable point is
or “how unstable” an unstable point is. This information can
then be used to avoid drawing unnecessary samples and help
us focus on the regions where the boundary between stable
and unstable points is likely to appear.

Growing the approximation of the region

When a first approximation of the transient stability region is
obtained we could take small steps in the normal directions
from the different affine parts of the boundary. This would
give an efficient way of further expanding the boundary to get
a maximal approximation of the stability region.

Non-heuristic guess of normal vector

The initial guess of the normal vector at the approximation
points is very heuristic. One alternative could be to solve
a linear problem where we maximize the distance of the
closest boundary point to a hyperplane passing through the
approximation point. The normal to this hyperplane can then
be taken as a first approximation of the normal to the second
order surface at the boundary point.

Higher order surfaces

Instead of increasing the number of approximating surfaces
we may want to increase the order of the approximations.
Note that this would preserve the linearity of the optimization
problems but dramatically increase the number of variables
when the parameter space has a high dimensionality.
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