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Abstract

Increasing wind power penetration levels bring about new
challenges for power systems operation and planning, because
wind power forecast errors increase the uncertainty faced by
the different actors. One specific problem is generation re-
dispatch during the operation period, a problem in which
the system operator seeks the cheapest way of re-dispatching
generators while maintaining an acceptable level of system
security. Stochastic optimal power flows are re-dispatch algo-
rithms which account for the uncertainty in the optimization
problem itself.

In this article, an existing stochastic optimal power flow
(SOPF) formulation is extended to include the case of non-
Gaussian distributed forecast errors. This is an important
case when considering wind power, since it has been shown
that wind power forecast errors are in general not normally
distributed. Approximations are necessary for solving this
SOPF formulation. The method is illustrated in a small power
system in which the accuracy of these approximations is also
assessed for different probability distributions of the load and
wind power.

Introduction

In recent years, large investments have been made in wind
power, and this trend is expected to continue in the coming
decades. Integrating more wind power in the production mix
offers great opportunities for the society, such as reducing
greenhouse gas emissions and the dependence on foreign fuel.
Large wind power penetration does, however, require changes
in the way power systems are planned and operated [1].

For the operation of power systems, frequency control schemes
are crucial for ensuring the balance between the electric
demand and the production. They enable system operators to
re-dispatch the production either automatically or manually
during real-time operations to follow the load variations. With
wind power, these frequency control schemes must not only
meet the uncertainties of the load but also those of the wind.
Hence, using the frequency control reserves in an optimal way
requires designing generation re-dispatch algorithms which
account for these uncertainties while ensuring a secure power
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system operation.

A secure operation is ensured if the power system is operated
within stability limits beyond which the system would become
unstable. Examples of stability limits are voltage stability
limits, small-signal stability limits and line thermal limits.
Operating the system within these limits means that the
operating point must stay in a stable operation domain.

Traditional generation re-dispatch algorithms do not consider
the whole range of the uncertainties. Rather, they ensure that
only for a few possible outcomes of the uncertainties, the
power system will be in the stable operation domain after any
of some selected contingencies. Margins must then be added
for power system operation to be reliable even in the cases
unaccounted for in the re-dispatch.

Other approaches which account for the whole range of the
uncertainty have been developed. Stochastic optimal power
flows are such algorithms. They are formulated as minimiza-
tion problems with probabilistic constraints and the re-dispatch
cost as objective function [2]–[5]. They are solved considering
the whole probability distribution function of the stochastic
system parameters. In particular, in [5], a S-OPF formulation
with one single constraint ensuring a minimum level of system
security, defined as the probability of the system to remain
stable, is presented, and a method to solve it is proposed. The
stability constraint uses parametrizations of approximations of
the stability boundary developed in [6].

These previous works have solved the S-OPF problem with
normally distributed uncertainty. This is a common assumption
for the distribution of load forecast errors. When considering
wind power in the uncertainty, however, the normal distribu-
tion has been shown not to be adapted for modeling wind
power forecast errors [7], [8]. Rather, the beta and hyperbolic
distributions have been suggested as appropriate.

In this paper, we further develop the method for solving the
S-OPF formulation in [5] in order to include uncertainty with
other distributions than the Gaussian distribution. This allows
for the inclusion of wind power into the uncertainty considered
when solving stochastic optimal power flows.

The paper is organized as follows. In the first section,
background about generation re-dispatch is given. Stochastic
optimal power flows are presented in the second section. In
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the third section, the method to solve the S-OPF formulation
from [5] is extended to include non-Gaussian distributed
uncertainty. The third section ends with a summary of the
method and of the improvements made compared to original
method in [5]. Application to power system operations is
discussed in the fourth section. In the fifth section, a case
study is carried out that assesses the accuracy of the proposed
method.

Background in optimal generation re-dispatch

Security-constrained optimal power flow

The traditional way of getting an optimal generation re-
dispatch is to solve a security-constrained optimal power flow
(SCOPF) problem [9]. The constraints to the SCOPF problem
ensures that the optimal solution satisfies the so-called N − k
criterion, where k is the number of simultaneous contin-
gencies that the system must be able to survive. Examples
of contingencies are tripping of major transmission lines or
loss of large generation units. SCOPFs are either preventive
[9] or corrective [10]. In the preventive case, the optimal
setting of the control variables remains unchanged in the post-
contingency systems, and ensures that the system survives the
contingencies. In the corrective case, the optimal setting of
the control variables can be different in the post-contingency
systems.

In the following, the preventive SCOPF will be considered.
Let nc be the number of selected contingencies, and let i = 0
correspond to the pre-contingency case. Preventive SCOPF can
be expressed as

min
u0

C(x0, λ0, u0) (1a)

s.t. fi(xi, λi, u0) = 0, i = 1, . . . , nc, (1b)
hi(xi, λi, u0) ≤ 0, i = 1, . . . , nc, (1c)

where x ∈ Rnx , λ ∈ Rl and u ∈ Rk are the state variables
(such as voltage magnitudes and angles), the parameters – such
as the active power consumption – and the control variables,
respectively. The function C : Rnx × Rm × Rnu → R is the
objective function to be minimized, f : Rnx × Rm × Rnu →
Rnx represents the power flow equations ensuring that the
solution corresponds to a possible equilibrium, and h : Rnx ×
Rm × Rnu → Rnl contains nl operational constraints. The
objective function is to minimize the operating costs in the
pre-contingency system. The optimal preventive actions are
given by the optimal solution û0.

Generation re-dispatch under uncertainty

A secure dispatch as given by SCOPF is secure only for the
considered contingencies and operating conditions. Operating
conditions refer to λ in the formulations above, which contains
parameters not controllable by the system operators. Wind
power and load are two examples of such parameters. When
solving a SCOPF, the parameter λ is given a value which,
according to the system operator, reflects the operating con-

ditions for which the study is done (for example, peak load).
These values can be obtained by forecasts. The shortcoming
of such approaches is that it only considers a small amount of
operating conditions. Today, system operators protect the sys-
tem against risks associated with uncertainty by having some
operational margins, see for example the Swedish example in
[11]. Considering uncertainties directly when computing the
optimal decisions would allow a more flexible and efficient
use of the system resources.

Stochastic optimal power flows

Formulation

Stochastic optimal power flows (S-OPF) address the afore-
mentioned shortcoming of the traditional approach, because
they include the uncertainty in the optimization problem itself
[2]. When considering continuous distribution functions of
the parameters (such as the traditional Gaussian distribution
for loads), the constraints must be changed from being de-
terministic to being probabilistic because the probability of
violating the deterministic constraints is nonzero. Work on S-
OPF includes [2]–[4], [12], [13]. A general formulation of a
S-OPF problem is

min
u

E [C(x, λ, u)] (2)

s.t. P [hi(x, λ, u) ≤ 0] ≥ 1− αi, i = 1, . . . , nh, (3)

where αi > 0 are small and nh is the number of probabilistic
constraints.

In [2], a S-OPF was formulated to maximize the power transfer
over a set of buses with the constraint that the probability of
the transfers across some bottlenecks to violate their limit is
kept low.

In [5], [6], [14] a stochastic optimal power flow formulation for
generation re-dispatch with stability constraint was developed.
Voltage stability, small-signal stability and operational limits
are taken into account. This formulation is

min
u∈U

CG(u), (4a)

s.t.
nc∑
i=0

qiP [ζ /∈ Di(u)] ≤ α, (4b)

where u ∈ U ⊂ Rk are the control variables, CG(u) : Rk → R
is the cost associated with control u ∈ U , nc is the number of
contingencies, qi is the probability that contingency i occurs,
ζ ∈ Rl are the stochastic system parameters (load and wind
power for example), Di(u) ⊂ Rl is the stable operation
domain in Rl and 1−α is the desired level of system security.
The case i = 0 corresponds to the pre-contingency system.
Contingencies occur with a small probability so that qi � 1
for i = 1, . . . , nc and q0 ≈ 1.

Here, the control variables will be taken as the set points
of the generators participating in the generation re-dispatch.



3

The optimal solution to (4) gives the cheapest generation re-
dispatch which ensures that the probability of the system to
leave the stable operation domain after none or any one of the
nc contingencies has happened is smaller than α. The quantity
1 − α can thus be seen as a level of system security. It is
assumed that the re-dispatch orders will be carried out.

The aim of this paper is to further develop the method used
in [5] to include non-Gaussian distributions of the uncertainty
ζ when solving (4).

Power system modeling

In the S-OPF formulation in (4), the stable operation domains
Di(u) must be characterized. The characterization depends on
the power system models.

Power systems are usually modeled by a set of differential
algebraic equations (DAE) of the form

ẋ = f(x, y, λ), (5a)
0 = g(x, y, λ), (5b)

where x ∈ Rnx are state variables, y ∈ Rny are algebraic
variables, and λ ∈ Rm are parameters. The parameters λ ∈
Rm include here both the control variables u ∈ Rk and the
stochastic system parameters ζ ∈ Rl so that λ =

[
uT ζT

]T
.

The smooth functions f : Rnx × Rny × Rm → Rnx and
g : Rnx × Rny × Rm → Rny are the differential and alge-
braic equations, respectively. Generators’ internal voltages and
speeds are examples of state variables. The algebraic variables
include bus voltages and angles.

If the behavior of the system for a specific value of the
parameters is of interest, the dependence on λ can be omitted:

ẋ = f(x, y), (6a)
0 = g(x, y). (6b)

Equilibria of the system are given by{
0 = f(x, y, λ),

0 = g(x, y, λ).
⇐⇒ F (z, λ) = 0, (7)

where z ∈ Rnz =
[
xT yT

]T
, nz = nx + ny and F : Rnz ×

Rm → Rnz for the whole set of equations at equilibrium.

Switching devices need special attention for modeling. Au-
tomatic voltage regulators (AVR) switching between voltage
and overexcitation control are examples of switching devices.
Switching devices can be modeled by different equations,
depending on the state of the device, which means that the
sets of equations f and g change as well. Furthermore, the
type of one variable (state or algebraic variable) can change
depending on the state of the device, and this must be dealt
with carefully in the system modeling. For example, when
the field voltage of a generator is under voltage control, it is
considered as a state variable, whose dynamics are described

by an equation entering f . When it reaches the voltage
regulator’s limit, however, it becomes an algebraic variable
defined by an equation in g. In [15], an appropriate steady-
state model for this case was given. It is made of the following
equations at equilibrium:

ψ(z, λ) = 0, (8a)

fa,i(z) · f b,i(z) = 0, i = 1, . . . , ns, (8b)

fa,i(z) ≥ 0, i = 1, . . . , ns, (8c)

f b,i(z) ≥ 0, i = 1, . . . , ns, (8d)

where ns is the number of switching devices, fa,i is the
equation of the field voltage of generator i under voltage
control, f b,i is the equation of the field voltage of generator i
under overexcitation control and ψ : Rnz+m → Rnz+m−ns

are all equations in F (z, λ) except those representing the
switching devices. Equation (8b) ensures that at least one
of fa,i and f b,i is zero. Hence F (z, λ) in (7) includes all
equations in ψ and, for each switching device, the equations
fa,i and f b,i that are equal to zero. Note that for a certain
generator i, it can happen that both fa,i and f b,i are equal to
zero.

Stability boundaries

The stable operation domains Di(u), i = 0, . . . , nc, are
bounded by the stability boundaries Σi(u) consisting of
different smooth parts Σij(u), j ∈ Ji, each one of them
corresponding to different types of stability limits, such as
saddle-node bifurcations (SNB) [16], switching loadability
limits (SLL) [17], Hopf bifurcations [18] (HB) and operational
limits (OL) [19]. Hence, for one given state i, i = 0, . . . , nc, of
the system (pre- or post-contingency state), the overall stability
boundary Σi(u) is in general not smooth. Two smooth parts
Σij(u) intersect on a manifold of points, called corner points
in [19]. Note that the stable operation domains Di(u) ⊂ Rl
in the space of stochastic system parameters ζ are restrictions
of the stable operation domains Di ⊂ Rm in the space of
parameters λ = (u, ζ) for a given value of u. The same applies
to the stability boundaries Σi(u) and their smooth parts Σij(u)
which are restrictions to the ζ space of stability boundaries in
the λ space.

Each smooth part Σij of a loadability surface Σi is a manifold
of co-dimension one in the m-dimensional space of parame-
ters. Each smooth part is characterized by a set of equations
ΨTYPE(z, λ, r) where TYPE is the type of stability limits of
interest (such as SNB, SLL, HB and OL), z =

[
xT yT

]T
as above, and r ∈ Rt are additional variables necessary
to characterize the surface. All points λ on the stability
boundaries are equilibria of the system. Hence, (7) holds for
all smooth parts and is included in the set of equations Ψ. In
[6], the other equations included in Ψ for the four types of
stability limits presented above (SNB, SLL, HB and OL) were
given.



4

Solving the S-OPF problem

Approximating the stable operation domains

Solving problem (4) requires the knowledge of the stable oper-
ation domains, and, hence, of the stability boundaries, which
are not known but can be computed pointwise by running,
for example, continuation power flows (CPF). However, the
process of computing many points on the stability boundaries
in order to have a precise knowledge of it is time consuming
and therefore cannot be performed close to real-time, which
is the time horizon of interest when solving the generation
re-dispatch problem for power systems operation. In [5], it
was proposed to approximate the different smooth parts Σij
of the stability boundaries by second-order approximations
developed in [6], [20]–[22].

The second-order approximations will be denoted Σaij where
i = 0, . . . , nc is for the state of the system (pre- or post-
contingency) and j ∈ Ji is for the smooth part of the
stability boundary Σi which is approximated. These second-
order approximations can be defined as below, where a short
review of the theory from [6] is given.

Consider one smooth part Σij ∈ Rm. Let nij(λijc ) be the
normal vector to Σij at a point λijc . A basis {c1, . . . , cm−1}
for the tangent hyperplane Tλij

c
Σij can be computed using for

example the Gram-Schmidt process. Let Cij = [c1 . . . cm−1].
The second-order Taylor expansion of Σij around the point
λijc is given by Lij : Tλij

c
Σij → Rm, defined as

Lij(xc) = λijc + Cijxc + 1
2 IIij(xc)nij(λijc ), (9)

where xc is a displacement away from λijc in the tangent
hyperplane, and IIij is the second fundamental form of Σij
at λijc [23]. In the following, the subscripts and superscripts ij
will sometimes be omitted for ease of notations. The second
fundamental form is defined as

II(xc) = −〈dNλc
(xc), xc〉 . (10)

The map dN
c

: Tλc
Σij → Tλc

Σij is the Weingarten map [23]
which is the differential of the Gauss map N : Σ → Sm−1
where Sm−1 is the unit sphere in Rm, i.e. the map that takes
the point λ ∈ Σij to the normal vector n(λ) ∈ Sm−1, of Σij
at λ. The Weingarten map measures how much the normal
vector changes, thus giving a measure of the curvature of the
surface.

Second-order approximations of the stability boundary are
local approximations around the approximation points λc. The
closer to λc the better we can expect the accuracy of the
approximations to be. The choice of λc therefore influences the
accuracy of the approximations in the entire parameter space.
It was proposed in [6] that the approximation point on each
smooth part Σij be chosen as the solution to the following
optimization problem:

max
λ

ρ(λ) (11a)

s.t λ ∈ Σij , (11b)

where ρ : Rm → R is a so-called importance function. This
optimization problem is solved in [6] by a predictor-corrector
method. Examples of importance functions are the negative
Euclidean norm and probability density functions describing
the uncertainty on the stochastic system parameters ζ. Exam-
ples were given in [20] where a similar problem was solved.

Distance functions dij giving the signed distance from any
point (u, ζ) ∈ Rm in parameter space to the corresponding
second-order approximation of the smooth part Σij can then
be defined. The distances are defined in the direction of the
normal to the corresponding smooth part at the point λc on
Σij at which the second-order approximation was computed:

dij(λ) = (Lij(C
T (λ− λc))− λ) · n(λc)

= (λc − λ) · n(λc) + 1
2 II(CT (λ− λc)).

(12)

Note that the distance functions are random variables since
ζ, and thus λ, is a random variable corresponding to the
stochastic system parameters. A distance dij(λ) is negative
if the point λ is beyond the corresponding smooth part Σij .
Hence, the point λ does not belong to the approximation of the
stable operation domain Di(u) if at least one of the distances
dij is negative, j ∈ Ji, that is if minj∈Ji dij(u, ζ) < 0.

The S-OPF formulation in (4) can therefore be approximated
by

min
u∈U

CG(u), (13a)

s.t.
nc∑
i=0

qiP

[
min
j∈Ji

dij(u, ζ) < 0

]
≤ α. (13b)

It will be convenient in the following to express the distances
as second-order polynomials in ζ [5]:

d(u, ζ) = a(u) + bi(u)ζi + cijζ
iζj , (14)

where the tensor notation (sum over repeated indices) has been
used, and a(u) ∈ R, b(u) ∈ Rl and c ∈ Rl×l. Note that the
coefficient of the quadratic term c does not depend on u. The
coefficient a(u) is a quadratic polynomial in u, and b(u) an
affine function in u. The expression of these coefficients are
given in Appendix.

Computing the value of the constraint and its derivatives

Further approximations are needed to solve (13) because no
formula is known to compute the probability of the minimum
of dependent random variables. In [5], a pairwise exclusion
method is used to this purpose. It allows us to write the part
of the constraint corresponding to each system state i as an
expression in which only probabilities of one or two distance
functions being negative appear. In the following, the index i
corresponding to the state of the system will be omitted, and
we write dj for dij , the distance function corresponding to
the second-order approximation of the j-th part of the stability
boundary for the system in state i. Hence, with the method



5

from [5], P [minj∈J dj(u, ζ) < 0] can be approximated by an
expression containing only terms of one of the following two
forms

pj = P [dj(u, ζ) < 0] (15)

or pjk = P

[[
dj(u, ζ)
dk(u, ζ)

]
<

[
0
0

]]
(16)

where dj(u, ζ) and dk(u, ζ) are distance functions of the form
(14). In this pairwise exclusion method, the important case of
SNB-SLL intersections must be handled differently than other.
More detail about these intersections can be found in [22].

The marginal probability distributions of the uncertainty ζ
(wind power and load at each injection point) are assumed to
be known. In order to compute the probabilities of the forms
(15) and (16), however, the cumulative distribution functions
of the distance functions are needed. Since the distance
functions are second-order polynomials of the uncertainty, it is
not, in general, possible to get an analytical expression of these
probability distributions. It is proposed here to approximate
these probabilities by Edgeworth approximations.

In the original method presented in [5], such probabilities
where estimated by assuming that the vector [dj dk]

T was
Gaussian and by numerically computing the probability in
(16). In general, however, single distance functions and vectors
of such distance functions are not Gaussian, even if the
uncertainty ζ has a Gaussian distribution. Wind power forecast
error distributions are not Gaussian [7], [8] and therefore
introduce further deviation from a Gaussian distribution in
ζ and the distance functions through (14). Using Edgeworth
approximations allows us to account for non-Gaussian vectors.

Edgeworth approximations Edgeworth approximations can
be used in order to approximate cumulative distribution func-
tions such as the ones in (15) and (16). In the following,
the notations from [24, Chapter 5] are adopted. Let X be
a multivariate random variable with mean µ and covariance
matrix Σ, and consider the cumulative distribution function
Φ(x) of a multivariate normal random variable with same
mean and covariance matrix as X . Then, the cumulative
distribution function FX of X can be approximated in x by

FX(x) ≈ Φ(x) + ηijkFijk(x)/3! + ηijklFijkl(x)/4! + . . . ,
(17)

where the tensor notation (sum over repeated indices) has been
adopted,

Fijk(x) = (−1)3
∂3Φ(x)

∂xi∂xj∂xk
, (18)

Fijkl(x) = (−1)4
∂4Φ(x)

∂xi∂xj∂xk∂xl
, (19)

and ηijk, ηijkl, . . . are so-called formal moments, and can be
computed from the cumulants κi,j,k, κi,j,k,l, . . . of X . Usually,
the following truncation is used:

FX(x) ≈ Φ(x) + κi,j,kFijk(x)/3! + κi,j,k,lFijkl(x)/4!

+ κi,j,kκl,m,nFijklmn(x)/72,
(20)

where the η:s have been replaced by their expressions in term
of the cumulants of X .

Application to the S-OPF problem The needed probabil-
ities in (15) and (16) can be approximated by Edgeworth
expansions of the type (20) by noting that pj = Fdj (0) and
pjk = Fdj ,dk(0, 0). The first four cumulants of all single
and pairs of distance functions are needed to apply (20).
Assuming that the cumulants of the uncertainty ζ are known
(for example as given by forecasts), the problem of computing
the cumulants of vectors of distance functions arises.

In [24, Section 3.4], formulas are given for the cumulants of
polynomial transformations of random variables, such as the
distance functions in (14). The formulas are given in Appendix
and allow for the computation of the first four cumulants
κd,1, κd,2, κd,3 and κd,4 of a vector of p distance functions of
the form (14) given the first eight cumulants of the uncertainty
ζ.

Using the pairwise exclusion method from [5] and Edgeworth
approximations, the probabilities P [minj∈J dj(u, ζ) < 0] ap-
pearing in the constraint of the S-OPF formulation in (13) can
be approximated by p̂i, for all system states i, i = 0, . . . , nc,
where p̂i is a sum of terms computed from Edgeworth approx-
imations.

The S-OPF formulation in (13) then becomes:

min
u∈U

CG(u), (21a)

s.t.
nc∑
i=0

qip̂
i(u) ≤ α, (21b)

This is a nonlinear constrained optimization problem. The
Lagrangian is

L(u, γ) = CG(u)− γ
nc∑
i=0

qip̂
i(u), (22)

where γ is the Lagrangian multiplier. From the analytical
expressions of the p̂i(u) as sums of terms computed from
Edgeworth approximations, the first- and second-order deriva-
tives ∇uL and ∇uuL of the Lagrangian can be obtained. The
Karush-Kuhn-Tucker (KKT) conditions are used to find a local
optimum to the problem [25].

Estimating the cumulants of the stochastic system parameters

In the method presented above, the cumulants of the distance
functions are computed from the cumulants of the stochastic
system parameters ζ, which are assumed to be known. In
practice, load and wind power forecasts will be available, and
the uncertainty ζ then corresponds to the forecast errors around
the forecasted values. These forecast errors can be described as
probability distributions. For instance, the load forecast errors
are often taken as Gaussian distributed and several publications
have shown that wind power forecast errors follow beta or
hyperbolic distributions [7], [8].
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Given these forecast error probability distributions, a large
number of samples of ζ can be generated, from which the
cumulants are estimated using standard statistical analysis
software.

Summary of the proposed method and of the contributions

Using the S-OPF formulation in (21) for re-scheduling gener-
ation during operation requires two phases:

• Phase 1: compute the second-order approximations for the
pre- and post-contingency systems.

• Phase 2: solve the S-OPF.

During phase 1, for each system state i = 0, . . . , nc, second-
order approximations Σaij of the smooth parts Σij , j ∈ Ji
of the stability boundary for this system state are computed.
During this phase, the stochastic system parameters ζ are as-
sumed to be distributed according to a probability distribution
P1. Distance functions dij , j ∈ Ji are defined for each second-
order approximation from (12).

During phase 2, the S-OPF problem in (21) is solved. Cu-
mulants of all single and pairs of distance functions are
needed in order to compute all p̂i(u), i = 0, . . . , nc, using
Edgeworth approximations. These cumulants are computed
from the cumulants of the stochastic system parameters ζ,
which are assumed to be distributed according to a probability
distributions P2. Note that P2 can be different from P1,
since the S-OPF problem is solved after the second-order
approximations have been computed, and, hence, a better
knowledge of the distribution of ζ may be available.

Compared to the initial method in [5], the contribution of this
paper is the use of Edgeworth approximations which account
for non-Gaussian distributed vectors of distance functions. As
explained above, accounting for non-Gaussian distributions is
particularly important when wind power forecast errors are
considered in the uncertainty. The computations of the required
cumulants to be used in the Edgeworth approximations were
explained in detail above.

Application to power systems operation

Phase 1 is the most-time consuming phase and cannot be
performed during real-time operation. The second-order ap-
proximations are computed around approximation points on
the actual stability boundary, which are found considering
forecasts for the stochastic system parameters such as load
and wind power. Phase 2, however, is performed in real-time
when the system operator wants to re-schedule the generation.
After solving the S-OPF problem, an optimal re-scheduling is
obtained, but there is a delay before the re-scheduling orders
are carried out. Hence, when phase 2 is performed, forecasts
for the system parameters are also used, but, compared to
phase 1, forecasts are done closer to the time at which the
re-dispatch orders are fully enforced.

Since the second-order approximations are local approxi-
mations, the closer to the approximation points, the better
the approximations. The approximation points are found by
maximizing the importance function ρ in (11). Hence, better
forecasts will improve the accuracy of the method, since the
actual system parameters will then be close to the approxi-
mation points. It is therefore desirable to perform phase 1 as
close as possible to the operating period. The forecasts used
during phase 2 will be more accurate than those for phase 1
because they are performed closer to the time for which the
system parameters are forecasted. It is thus important to note
that the forecasts are different between phase 1 and phase 2.

This is depicted in Figure 1. Before the operating period,
at t = t0, the second-order approximations are computed
using forecasts available at t = t0 for the stochastic system
parameters (forecasts F1 in the figure). During the operating
period, at t = t1, the system operator solves the S-OPF
problem, using updated forecasts F2, and sends re-scheduling
orders according to the optimal solution. Later during the
operating period, at t = t1 + δ, the re-scheduling orders will
be fully carried out, δ time steps after the order was given at
t = t1.

Timet0 t1 t1 + δ

Operating period
(one hour or less)

Phase 1: Get
forecasts F1,
and compute

the second-order
approximations

Phase 2: Get
forecasts F2,

better than F1,
and solve the

S-OPF for optimal
re-scheduling of
the generators.

Re-scheduling
carried out.

Fig. 1: The two phases in solving the S-OPF problem.

Case study

Problem description

We aim at assessing the accuracy of the overall method of
solving (4), that is of using the approximation (21) instead of
(4). We consider the power system from [19] in Figure 2. The
system has three generators and one load.

Generator 1 is the only generator participating in primary
frequency control while reserves can be activated discretely
by re-dispatching generator 3. Generator 2 is a wind farm
with installed capacity Pinst. Generators 1 and 3 must make
up for both the wind and the load variations. When the
system operator decides upon the optimal production level
of generator 3, she must therefore take into account the
uncertainty coming from both the wind and the load.
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B
Load

Pg3

Pg2

Pg1 1

2

3

45 6 7

Fig. 2: Power system from [19].

The three generators are equipped with first-order automatic
voltage regulators (AVR) with overexcitation limiters (OXL).
These devices are modeled by the following equations

fa,i(z) = Ef,i +Ki (Vref,i − Vi) , i ∈ {1, 2, 3} (23)

f b,i(z) = −Ef,i + Elim
f,i , i ∈ {1, 2, 3}, (24)

where fa,i(z) and f b,i(z) were defined in (8), Efi are the
excitation field voltages, Ki the gains of the exciters, Vref,i the
terminal voltage references, Vi the terminal voltages and Elim

fi

the limits of the exciters.

All transformer ratios are set to 1. The load is assumed to
have a constant power factor equal to 2/

√
5, corresponding

to Pl = 2Ql, where Pl and Ql are the active and reactive
power consumptions of the load, respectively. Further details
are given in Table I.

TABLE I: Power system details

x15 = x26 x37 = x47 x56 x67

0.032 0.016 0.12 0.005625

B Ki Vref,i Elim
fi

0.25 100 1 2.5968

One contingency will be considered in addition to the base
case (system without any contingency): Fault on the line 5−6
corresponding to doubling the line impedance, which becomes
x56 = 0.24.

Stability boundaries

The stability boundaries for these two cases (pre- and post-
contingency) have been computed using continuation power
flows and are plotted in Figures 3 and 4. Different colors
correspond to different smooth parts, as explained above. The
legends giving the types of the different smooth parts are
presented in Tables II and III. The last two columns give the
generators which are under OXL or on AVR. At an SLL, one
of the generators is in both sets.

Scenarios

Recall from above that the S-OPF problem is divided in two
phases: computing the second-order approximations before
the operating period, using a forecast F1, and solving the

Fig. 3: Stability boundary of the base case system.

Fig. 4: Stability boundary of the system after contingency.

TABLE II: Smooth parts of the stability boundary of the base
case system.

Color Type Generators on AVR Generators under OXL

Orange SLL 1,2 2,3
Green SLL 2 1,2,3

Dark blue SNB 2 1,3
Yellow SLL 2,3 1,3

Light blue SNB 2,3 1

TABLE III: Smooth parts of the stability boundary of the
system after contingency.

Color Type Generators on AVR Generators under OXL

Dark blue SLL 1,2 2,3
Light blue SLL 1,2 1,3

Yellow SLL 1,2,3 1

optimization problem during the operating period, using a
different forecast F2.

The load forecasts are here modelled by Gaussian distribu-
tions, and the wind power forecasts by beta distributions. The
parameters of these distributions vary depending on which
forecast is of interest. The load and wind power forecasts are
N (µi, σ

2
i ) and β(ai, bi), respectively, for forecast Fi, i = 1, 2.

The wind farm is also characterized by its installed capacity
Pinst. A scenario will therefore be a set of values µi, σi, ai,
bi and Pinst. The different scenarios considered for this case
study can be found in Table IV.
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TABLE IV: Definition of the scenarios with scenario 0 as base
case. Only values different from the base case are shown for
the other scenarios.

Scenario number µi σi ai bi Pinst [p.u.]

0 4.3 0.5 2 5 2.5
1 3 – – – –
2 3.5 – – – –
3 3.5 – 7 7 –
4 3.5 – 20 50 –
5 3.5 – 50 50 –
6 – – 20 50 –

The base case is scenario 0. The second-order approximations
are computed using this scenario, i.e. scenario 0 gives the
forecast F1 used for seeking the most likely points around
which the second-order approximations are computed. Then all
scenarios are studied using these second-order approximations.

The coordinates of the points around which the second-order
approximations of the different smooth parts were computed
are given in Tables V. The coordinates are given in the
(Pg2, Pg3, Pl) space. The colors correspond to the ones in
Tables II and III.

TABLE V: Coordinates of the approximation points for each
smooth part of the pre- and post-contingency stability bound-
ary.

System Color Pg2 Pg3 Pl

Pre-contingency Orange 0.65 1.53 4.96
– Green 0.49 1.28 4.66
– Dark blue 0.41 1.11 4.48
– Yellow 0.26 0.57 3.86
– Light blue 0.20 0.31 3.56

Post-contingency Yellow 0.33 0.70 3.57
– Light blue 0.53 1.27 4.26
– Dark blue 0.58 1.35 4.38

With scenarios 0, 1 and 2, the effect of load forecast errors
will be studied. Scenarios 3, 4, 5 and 6 will be used to study
the effect of different parameters for the beta distribution.
They can be compared to scenarios 0 and 2 which use the
same beta distribution as for the computation of second-order
approximations. In all scenarios, the probability of occurrence
of the contingency is set to q1 = 0.02 so that the probability
of the base case is q0 = 0.98.

Figure 5 shows the probability density functions for the beta
distributions encountered in the scenarios. In the figure, the
wind power capacity is assumed to be 2.5 p.u.

In Table VI, the mean, standard deviation, skewness and
excess kurtosis of these two beta distributions, scaled for an
installed capacity of 2.5 p.u., can be found. The skewness and
excess kurtosis of a normal distribution are zero. For other
distributions they can be used as measures of how much these
distributions differ from the Gaussian distribution.

0 0.5 1 1.5 2 2.5
0

2

4

6

8

Wind power production [p.u.]

f
(x

)

a = 2, b = 5

a = 7, b = 7

a = 20, b = 50

a = 50, b = 50

Fig. 5: Probability density functions f of Beta distributions
β(a, b) with different parameters a and b describing the wind
power production from a wind farm with capacity 2.5 [p.u.].

TABLE VI: Statistical information for the beta distributions.

Scenario
number(s)

a b Mean Standard
deviation

Skewness Excess
kurtosis

0, 1, 2 2 5 0.71 0.40 0.60 -0.12
3 7 7 1.25 0.32 0 -0.35

4, 6 20 50 0.71 0.13 0.22 -0.01
5 50 50 1.25 0.12 0 -0.06

Results

The problem in (21) is to be solved in the case where u ∈ R is
the change in production from the base case in generator 3 and
ζ = [Pg2 Pl]

T ∈ R2 is the uncertainty due to forecast errors
in the load and in the wind power production from the wind
park in generator 2. The generation in generator 3 is therefore
Pg3 = P 0

g3 + u. In the following, we take P 0
g3 = 0 so that

Pg3 = u. The re-dispatch cost function CG(u) is assumed to
be increasing with u. Considering the contingency described
above, the problem becomes:

min
u∈R

CG(u), (25a)

s.t. p̂fail(u) = q0p̂
0(u) + q1p̂

1(u) ≤ α. (25b)

The probabilities of system failure for different values of Pg3
are plotted in Figure 6. The probabilities have been computed
both by the approximation method described above (solid lines
in the figure), and by numerical integration (dotted lines). The
latter value can be used as a reference to assess the accuracy
of the approximation method and is calculated in the following
way. For a given contingency and a specific value of Pg3(u) =
u, let (PL(u), Pg2(u)) be all points on the stability boundary
for this value of u. Then

P [ζ = [PL Pg2] /∈ D(u)] = 1− P [ζ ∈ D(u)] (26)



9

and

P [ζ = [PL Pg2] ∈ D(u)]

=

∫ 1

x=0

(∫ P̂l(u,x)

z=−∞
φ(z)dz

)
fX(x)dx

=

∫ 1

x=0

Φ(P̂l(u, x))fX(x)dx

(27)

where P̂l(u, x) is the value of the load on the stability
boundary when Pg3 = u and Pg2 = Pinstx, φ and Φ are
the probability density and cumulative density functions of
the Gaussian distribution N (µL, σL) describing the load, and
fX is the probability density function of X = Pg2/Pinst which
is beta distributed. The inner integration bounds P̂l(u, x) are
found by running continuation power flows, that is increasing
Pl for the given u and Pg2 = Pinstx until reaching the stability
boundary.
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Scenario 4
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Scenario 6

Fig. 6: Probability of system failure as a function of the
production in generator 3. Solid lines give the estimations
using the proposed method (second-order approximations and
Edgeworth expansions). Dotted lines give the exact probability
of system failure.

In Figure 6, the exact probabilities and their approximations
are almost indistinguishable. It can also be observed that the
larger the production in generator 3, the smaller the probability
of the system to become unstable, as expected since power
transfer from the remote generator 1 is then reduced. The
optimal solution to the optimization problem is therefore the
value of u for which the constraint is exactly equal to α, since
it would cost more to ensure a value of the constraint strictly
smaller than α.

The accuracy of the proposed method to solve the SOPF prob-
lem can be assessed by computing the error pfail−p̂fail

pfail
, where

p̂fail is the estimated probability of system failure computed
by the proposed method, and pfail is the exact probability of
system failure computed by numerical integration. The errors
for each scenario are plotted in Figure 7 as function of the

production in generator Pg3.
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Fig. 7: Relative error pfail−p̂fail
pfail

as a function of the production
in generator 3.

Discussion

Several approximations were necessary to obtain the SOPF
formulation in (21) from the original one in (4):

• Second-order approximations of the stability boundary were
used instead of the real ones. The second-order approxima-
tions are computed using scenario 0.

• The probability of the system to be outside the second-order
approximations is computed by Edgeworth expansions.

• The cumulants of the uncertainty ζ are not known but
estimated from a large number of samples of the ζ.

The error resulting from the last approximation can be reduced
by increasing the number of samples. In the following, the
impact of the first two approximations will therefore be
emphasized. The total error due to these approximations are
reflected in Figure 7. The relative error increases as the
production in generator 3 increases. This decrease in relative
accuracy can be explained partly because this region is far
away from the approximation points (see Table V) and partly
because the probability of system failure becomes very small
as Pg3 increases. To further investigate this, the relative errors
are plotted against the exact probabilities of system failure
(obtained by numerical integration) in Figures 8 and 9. It can
be seen from Figure 8 that there is a trend of increasing relative
error as the probability of system failure becomes smaller. This
is further emphasized in Figure 9, where compared to Figure
8, only the cases in which the probability of system failure
is smaller than 0.01 have been kept. It is seen clearly that in
most cases, the relative error remains under 0.1, but increases
above this value as the probability of system failure becomes
smaller (under 0.002).

Scenarios 0, 1 and 2 differ in the average load given by the
forecast. Scenario 1 has the largest peak in relative error (see
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Fig. 8: Relative errors as functions of the probabilities of
system failure.
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Fig. 9: Magnified parts of Figure 8: Relative errors as functions
of the probabilities of system failure. Scenarios 0 and 4, not
shown in the figure, have probabilities of system failure higher
than 0.1 in all cases.

Figures 7 and 9), which can be explained both by the large
error in load forecast (deviation from the base case scenario 0
used for computation of second-order approximation) and by
the fact that the probability of system failure to be estimated
becomes very small.

The load forecast error distributions are the same in scenarios
2 and 4, and but wind power forecast errors are modeled by
two different beta distributions (see Table VI). The differences
in these scenarios are the higher moments of the beta distribu-
tions. From Table VI, it can be seen that the beta distribution
of scenario 4 is closer to a Gaussian distribution since both
skewness and excess kurtosis are closer to zero compared to
scenario 2. The absolute value of the relative error for scenario

4 is slightly larger than that for scenario 2 for probabilities of
failures larger than 0.15 (compare the magenta and red curves
in Figure 8). It becomes the opposite when the probabilities
of system failure becomes smaller, with smaller relative errors
for scenario 4 than for scenario 2 (see Figure 9). Scenario 2
uses the same beta distribution as the one used for computing
the second-order approximations. It appears therefore that the
accuracy of the Edgeworth approximations when probability
distributions deviate too much from the normal distribution is
the main source of error when estimating low probability of
system failures.

However, this observation is not supported by the study of
scenarios 3 and 5 which have different beta distributions with
same mean, skewness of zero but different standard deviations
and excess kurtosis. Figure 9 shows that the relative errors
behave in a similar manner for these two scenarios although
scenario 5 is closer to a normal distribution (lower absolute
value of the excess kurtosis).

To investigate further the contribution of the different ap-
proximations, the total error can be broken down into two
components: the error due to the second-order approximations
and the error due to the other approximations, mainly Edge-
worth expansions. This breakdown can be done as follows.
The probability of system failure can be computed assuming
that the second-order approximations are the real stability
boundaries by using the same numeric integration method as in
(27) and computing the inner integration bound P̂l(u, x) as the
point on the second-order approximation when generator 2 is
producing Pg2 = Pinst and generator 3 Pg3 = u. There is one
such value P̂l(u, x) for each smooth part, and it corresponds to
the point (Pg2, Pg3, P̂l(u, x)) for which the distance function
in (14) of this smooth part is zero. The point corresponding
to the relevant smooth part for these values of Pg2 and Pg3 is
then chosen as the inner integration bound. The corresponding
probability of failure using the second-order approximations
as actual stability boundary is denoted pafail. The following two
relative errors can now be computed:

1) pfail−pafail
pfail

: error due to the second-order approximations (see
above for the definition of pfail).

2) pafail−p̂fail

pafail
: error due to the the other approximations (estimat-

ing the cumulants of the uncertainty ζ and using Edgeworth
expansions, see above for the definition of p̂fail). Since the
cumulants can be estimated accurately if enough samples
of the uncertainty are used, this error is mostly due to
Edgeworth approximations.

Figure 10 shows the breakdown of the total relative error into
these two errors for each scenario. It shows that in all cases, the
predominant term in the total error as Pg3 increases far from
the approximation points is the one associated with second-
order approximations. For smaller values of Pg3, however, the
error corresponding to using Edgeworth approximations can
be predominant.
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Fig. 10: Breakdown of the relative error for the seven scenarios.
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Looking further at the error due to the second-order approxi-
mations, when Pg3 increases, the valid smooth parts of the
actual stability boundaries are the orange one in the base
case (Figure 3) and the blue one in the post-contingency
case (Figure 4). These two smooth parts’ curvature change
as Pg3 increases, especially in the region where also Pg2 is
large (top-right hand corner in the figures). Since second-order
approximations do not account for changes in the curvature,
this impacts the accuracy of the approximations. Two solutions
could be considered to enhance this accuracy:

1) Use more second-order approximations: for each smooth
part, several second-order approximations could be com-
puted, each valid for different parts of the smooth parts.
The issue with this solution is the choice of the approxima-
tion points of the additional second-order approximations.

2) Use higher order approximations: third-order approxima-
tions of the stability boundaries could be used. Formulas
for third-order approximations are given in [22]. Since only
one third-order approximation would be computed for each
smooth part, the method described above for identifying
the best approximation points could still be used.

Conclusion

In this paper, a previous stochastic optimal power flow for-
mulation for generation re-dispatch was further developed
in order to be able to handle forecast errors which are not
Gaussian distributed. It is important to consider non-Gaussian
distributions in power systems with large amounts of wind
power since it was shown that wind power forecast errors are
typically not Gaussian distributed [7], [8]. The formulation
is an optimization problem in which the cost of re-dispatch
is minimized while keeping the probability of system failure
low.

A method is proposed to solve the arising minimization prob-
lem. The method builds upon second-order approximations of
the stability boundary and Edgeworth expansions to estimate
the probability of system failure. The accuracy of the method
is assessed in an illustrative example, and the obtained results
show that the relative error due to the approximations is
low, but increases as the probability of system failure to be
estimated decreases. In future work, further assessments of
the method should be carried out to study how the method
scales in larger power systems. Attention should be given to
the behavior of the method to estimate low probabilities of
system failure.

Appendix I
Coefficients of the distance functions

Consider a distance function of the form (12), and the expres-
sion of the second-fundamental form in (10). The parameter
λ ∈ Rm can be written λ = [u ζ]

T , with u ∈ U ⊂ Rk and
ζ ∈ Rl with m = k + l. Similarly, the approximation point
around which the second-order approximation corresponding

to the distance function was calculated can be written λc =
[uc ζc]

T .

Let M = − 1
2C dNCT . Let the normal be n(λc) = [n1 n2]

T

where n1 ∈ Rk and n2 ∈ Rl are the components of the normal
corresponding to u and ζ in λ, respectively. Similarly, the
matrix M can be written

M =

[
(M)11 (M)12
(M)21 (M)22

]
, (28)

where (M)11 ∈ Rk×k, (M)12 = (M)T21 ∈ Rk×l and (M)22 ∈
Rl×l. Let also ∆u = u − uc. Then the distance function can
be written as a polynomial in ζ, see (14), with

a(u) =(n1)T∆u+ (∆u)TM11∆u+(
nT2 + 2(∆u)TM12

)
ζc + ζTc M22ζc

(29)

bi =− nT2 − 2M21∆u− 2M22ζc (30)
cij =M22 (31)

Appendix II
Cumulants of the the distance functions

The first four cumulants κd,1, κd,2, κd,3 and κd,4 of a vector
of p distance functions of the form (14) can be written as

κd,1 = ar + briκ
i + crijκ

ij . (32)

κd,2 = bri b
s
jκ
i,j + bri c

s
jkκ

i,jk + crijb
s
kκ

ij,k + crijc
s
klκ

ij,kl.
(33)

κd,3 = bri b
s
jb
t
kκ

i,j,k + bri b
s
jc
t
klκ

i,j,kl + bri c
s
jkb

t
lκ
i,jk,l

+ bri c
s
jkc

t
lmκ

i,jk,lm + crijb
s
kb
t
lκ
ij,k,l + crijb

s
kc
t
lmκ

ij,k,lm

+ crijc
s
klb

t
mκ

ij,kl,m + brijb
s
klb

t
mnκ

ij,kl,mn.
(34)

κd,4 = bri b
s
jb
t
kb
u
l κ

i,j,k,l + bri b
s
jb
t
kc
u
lmκ

i,j,k,lm

+ bri b
s
jc
t
klb

u
mκ

i,j,kl,m + bri b
s
jc
t
klc

u
mnκ

i,j,kl,mn

+ bri c
s
jkb

t
lb
u
mκ

i,jk,l,m + bri c
s
jkb

t
lc
u
mnκ

i,jk,l,mn

+ bri c
s
jkc

t
lmb

u
nκ

i,jk,lm,n + bri c
s
jkc

t
lmc

u
noκ

i,jk,lm,no

+ crijb
s
kb
t
lb
u
mκ

ij,k,l,m + crijb
s
kc
t
lc
u
mnκ

ij,k,l,mn

+ crijb
s
kc
t
lmb

u
nκ

ij,k,lm,n + crijb
s
kc
t
lmc

u
noκ

ij,k,lm,no

+ crijc
s
klb

t
mb

u
nκ

ij,kl,m,n + crijc
s
klb

t
mc

u
noκ

ij,kl,m,no

+ crijc
s
klc

t
mnb

u
oκ

ij,kl,mn,o + crijc
s
klc

t
mnc

u
opκ

ij,kl,mn,op.
(35)

The quantities appearing in the expressions above are:

• κij,k, κij,kl,mn, . . .: generalized cumulants of ζ. They can
be computed from the ordinary cumulants [24, Chapter 3].

• ar, bri and crij are tensors whose elements are the a(u),
bi(u) and cij from (14) of the r-th distance function, r =
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1, . . . , p. For instance, c3ij would correspond to cij from the
third distance function, and b2i (u) to bi(u) from the second
distance function.
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