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Abstract

Ill-conditioning of the power flow, reflected in high sensitivity
of bus voltage magnitudes to load variation, often serves
as a basic indicator of vulnerability to voltage instability.
This sensitivity may be quantified by the induced 2-norm
associated with the power flow Jacobian inverse, as may be
computed from Singular Value Decomposition(SVD). While
this conceptual picture is simple, near-real-time assembly of
the power flow Jacobian under volatile operating conditions,
and monitoring its singular values, presents severe compu-
tational and data management problems. As an alternative,
work here will propose a “model-free” voltage stability and
conditioning monitor, based solely on phasor measurement
unit (PMU) data, arguing that such an approach is much better
suited to near-real-time application. We first review singular
value analysis in voltage stability assessment, and relate these
existing approaches to our proposed method. We offer com-
putational evidence that the proposed measure closely tracks
the largest singular value of the inverse of the power flow
Jacobian under continuous change in operating point, without
the need for any network admittance data nor construction
of the power flow model. This work goes on to examine
characteristics of the PMU-based SVD measure in scenarios of
discontinuous changes to network topology. We demonstrate
that the new measure also provides a highly sensitive indicator
of the occurrence of topology change, that may offer a valuable
“consistency check” to supplement directly reported breaker
status.

Introduction

In most grid operations centers, monitoring of voltage stability
is closely tied to state estimator, and hence may typically be
updated at intervals on the order of five minutes. In alert
conditions for which the operating point may be changing
rapidly, equipment outages may further degrade the system
stability margin, and situational awareness may be lost be-
tween estimator updates. The state estimator heavily depends
on the network topology, which can be changed by unexpected
events. The dependence on knowledge of accurate network
parameter values and topology can be regarded as a limitation
of many current voltage stability monitoring algorithms. These
concerns may grow as high penetrations of renewable energy
resources in the grid give rise to greater volatility of system

operating point. There exists strong need for wide area mon-
itoring on a fast time scale. Due to advanced communication
technology and Global Positioning System (GPS), it is pos-
sible for Synchrophasor Measurements/Phasor Measurement
Units(PMUs) to measure the sinusoidal voltages, currents and
powers at each bus and report each of them in the phasor
form on a fast time scale. The widespread deployment of such
sensors suggests opportunity to supplement state estimator
based stability monitoring and system control schemes with
measurement-only based measures [1] [2].

Voltage stability refers to the ability of a power system to
sustain voltages at all buses after small or large disturbances.
Since the time frame of voltage stability varies from a few
seconds to many tens of minutes, it is possible to categorize
them into a short-term voltage stability and long-term voltage
stability [3]. Most research work in short-term voltage stability
has been based on dynamic modeling, but a model-free short-
term voltage stability monitoring from PMU data has also been
reported in [4], which makes a use of Lyapunov exponent
for its estimation. A model-based long-term voltage stability
detection from PMU data is presented in [5], and another
method based on Thevenin impedance matching condition
appears in [6], which require prior knowledge of system topol-
ogy for voltge stability assessments. Monitoring of reactive
power margins at generators represents an existing approach
to a measurement-only, “model-free” indicator for long-term
voltage stability [7], in contrast to a wide variety of techniques
that require relatively complete system models [5] [6] [8]
[9]. The work to be presented here may be viewed as an
evolution of this model-free approach, seeking to make use
of the broader class of data available from PMU’s.

The conceptual basis of the method to be proposed here
is a sensitivity analysis of power flow equation. Eigenvalue
or singular value analysis of Jacobian matrix has long been
utilized to long-term voltage stability, which seeks to pro-
vide indices of system vulnerability to the system operator
[10] - [14]. However, such indices have traditionally been
computationally expensive, and very dependent upon accurate
knowledge of system parameters and topology information, in
order to be able to construct the models to be analyzed. These
are very demanding tasks in near real-time. The proposed
method bypasses the need for parameter data to construct a
system model, relying instead on direct measurement of sys-
tem behavior by means of PMUs. It offers a real-time tool for
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identification of disturbances that may impact voltage stability,
such as line switching or outage events. As system operating
points become increasingly volatile in modern power systems,
it is likely that such real-time measures will become more
valuable. In such operating conditions, PMU-based methods
to detect topology change effects and outage locations may
become particularly useful.

This paper is organized as follows. Singular Value Decom-
position(SVD) is reviewed in section II, and a discussion of
voltage stability assessment using Jacobian matrix from power
flow equation is shown in section III. The proposed algorithm
is presented in section IV, followed by its application for
voltage stability assessments and topology change detection
with simulation results in section V. Conclusion and further
direction of this research are shown in section VI.

Singular Value Decomposition

Singular value decomposition (SVD) is a mathematical tool
for analysis of matrix structure and characteristic [15]. It
decomposes a matrix into a multiplication of three matrices,
which are composed of left singular vectors, singular values,
and right singular vectors. (1) In case of m-by-n (m ≤ n) real
valued matrix A of rank k, U is an unitary m-by-m matrix
whose column vectors are called as left singular vectors. Σ
is m-by-n matrix whose upper-left k-by-k sub-block has only
diagonal entries termed singular values, and the others are
zero. Also, V T is an unitary n-by-n matrix whose rows are
called as right singular vectors.

A = UΣV T (1)

As is widely recognized, SVD provides very valuable geomet-
ric intuition of the matrix as a linear operator. The singular
values may be viewed as identifying the “gain” of the linear
operator, acting on orthogonal axes in the domain (“input”),
determined by the right singular vectors, and reflected in the
range (“output”) along the orthogonal axes determined by the
left singular vectors. In other words, A maps a unit sphere in n
dimension space to a ellipsoid in k dimension space with the
directions indicated by left singular vectors and magnitudes of
singular values. This mapping is shown for n = 3, m = k = 2
in Fig. 1

Because of its simplicity, SVD has been widely used in
various fields such as linear least square optimization, data
compression with reduced rank approximation, neuroscience,
computer graphics, and information retrieval from “Big” data.
[15] [18] Especially, SVD provides the direction to reduce the
high dimensions of data to the lower dimensional space and
it often evinces hidden and simplified structure in large data
set. It is worth to mention that this characteristic is useful to
identify appropriate time window in the proposed algorithm.

Fig. 1. Geometric interpretation of SVD mapping [17]

In the case of a square matrix, the smallest singular value
offers a measure of the distance between the matrix and the
nearest singular matrix. For a square, nonsingular matrix, dyad
expansion in (2) offers another perspective on the role of
the smallest singular value of the original matrix, as setting
the maximum gain (i.e., the induced Euclidean norm) for the
inverse [16]. This characteristic should also be noted since
it is the fundamental idea used in long-term voltage stability
assessment with power flow Jacobian.

A−1 = V Σ−1UT =

n∑
i=1

uTi vi
sii

(2)

Voltage Stability Assessment

The voltage stability assessment using power flow Jacobian
has been studied for a long time and the high sensitivity of
bus voltage magnitudes to load variation often serve as a basic
indicator of proximity of voltage collapse [10] - [14]. Since
it is based on linearization method at a operating point, there
exist limitations for accounting the power system, which is
a nonlinear system. However, they may have been proved
its usefulness in terms of investigation of unstable system
behavior initiated by large disturbances [5].

Pi =

N∑
k=1

|Vi||Vk|(Gik cos θik +Bik sin θik) (3)

Qi =

N∑
k=1

|Vi||Vk|(Gik sin θik −Bik cos θik) (4)

Equation (3) and (4) show power flow equations, which define
the instantaneous operating points for electric power grid
in steady states. The equations originate from basic, linear
Kirchhoff Current Law (KCL), but they become nonlinear
when the current balance constraints are changed to power
balance constraints, and power generations and load demands
are modeled as fixed power injections or withdrawals from the
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network. In quasi-steady state, the time variation of power gen-
erations and withdrawals drive the entire system: bus voltages
evolve in response to these changes. Provided the quasi-static,
near-equilibrium assumption remains valid, the power system
can be viewed abstractly as a power flow solution engine,
taking power injection variations as inputs, and “computing”
bus voltage phasors as outputs. A key premise in our work
emerges from the viewpoint of that the vector of driving
inputs contains both a large signal components, that slowly
move the operating point, and small-signal, randomly varying
components, that persistently excite the system about its oper-
ating point. In mathematical formulation, the power system
loads are decomposed into a slowly varying, deterministic
process, and faster time scale stochastic process [19]. The
deterministic process represents the daily cycle of the load,
which is typically high in early afternoon and low in the late
evening and night. For the fast time scale stochastic variation
in load, early studies tended to adopt simple filtered white
noise representations [19]; some recent studies have adopted
more sophisticated Ornstein-Uhlenbeck Process models [20].
These may be represented in the form (5),(6) [21], [22].

Dt = mt +Xt (5)
dDt = dmt + θ(mt −Xt)dt+ σdBt (6)

where B represents brownian motion, and θ and σ denote the
mean reversion rate and volatility.

Fig. 2. Representative Sample Path for 24-hour Load Cycle with Additive
Ornstein-Uhlenbeck Process. The smooth line in the middle represents the
deterministic process.

Our goal will be to consider the impact of such random
load variations as driving terms in power balance equations
for the electric grid. The “forward” power flow equations,
linearized about an operating point can be written as shown
in (7). Viewing the physical power system as a power flow
solver, it is useful to invert this forward form, treating loads
and power injections as inputs, and the output response being
phasor angles and voltage magnitudes (as measured by PMUs).
Rearranging equation (7) leads us to equation (8), which

provides the desired input-output relationship. If the smallest
sii approaches zero, small magnitude variations in power
have the potential to yield very large response in bus voltage
magnitude and angle variations; as noted earlier, such high
sensitivity behavior is recognized as a precursor to voltage
instability problems. Indeed, the smallest singular value of
Jacobian matrix has been specifically proposed as an index
of vulnerability voltage collapse [10].[

∆P
∆Q

]
=

[
∂P (δ,|V |)

∂δ
∂P (δ,|V |)
∂|V |

∂Q(δ,|V |)
∂δ

∂Q(δ,|V |)
∂|V |

] [
∆δ

∆|V |

]
(7)

[
∆δ

∆|V |

]
= J−1

[
∆P
∆Q

]
=

n∑
i=1

uTi vi
sii

[
∆P
∆Q

]
(8)

Figure 3 is intended to aid visualization of the input-output
relationship. The upper figure displays sampled variations in
active and reactive loads at a particular bus, applied around
a nominal operating point in a 14 bus test power system
model. Repeatedly solving the power flow in this model, these
input variations are then mapped into corresponding points
in the output domain, that of bus voltage magnitude and
angle (the full vector of output variations may have many
non-zero components; only a two dimensional subspace is
displayed here). Because we are solving the power flow, the
linear mapping that approximates this relationship is that of
the inverse power flow Jacobian. The geometry of the output
points closely approximates what one expects from the linear
case: the sphere of points in the input space maps to an
ellipse of points in the output space. This matches the standard
geometric interpretation of the singular values: largest singular
value sets the length of the major axis of the “output ellipse,”
smallest singular value sets the length of the minor axis.

Proposed Algorithm

The fundamental goal of the proposed algorithm is to identify
ill-conditioned operating conditions, which may serve as a
indicator of vulnerability to voltage collapse. Since proposed
algorithm seeks a model-free analysis, the information as-
sumed available will be limited to sampled measurements of
voltage magnitudes and phase angles from the buses in the
power system. It is typically true that practical PMU mea-
surement sets may include bus power injections and demands.
Optimal use of power measurements will be reserved for future
work; here we will focus solely on the use of voltage phase
angle and magnitude measurements. Under this assumption on
available measurements, the goal of the proposed algorithm
is simple: Estimate the major axis of the “output ellipse”
through use of only measurement information, and track how
the quantity evolves in response to load variations or network
topology changes. The algorithm employed to estimate the
major axis is quite simple, and is closely analogous to the
use of SVD tools in other streaming data applications [23]:
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Fig. 3. The graphical description of Power System near a certain operating
point. (IEEE 14 bus system used)

after subtracting a base state from the measured PMU data,
and possible filtering/bad-data-correction, construct a sliding
windowed array of the streaming data, up to the most recent
measurement. For this array, one computes the largest (or
several largest) singular value(s) and left singular vector(s).

Fig. 4. The graphical description of the algorithm. θ and |V | stand for bus
voltage angles and bus voltage magnitudes of buses, measured by PMUs

The base state can be thought of the reference level of monitor-

ing the power system. For estimating power-flow conditioning,
the base state is chosen as a “low stress” operating point;
typically a lowest normal loading condition. It allows us
to monitor how much the power system deviates from the
reference level. For better results, the base state may be chosen
to be the operating point associated with the predicted “load
cycle.” The base state subtraction also lessens the impact of
different units and off-set between voltage magnitude and
phase angle. Roughly speaking, voltage magnitude usually
“centers” around 1 as measured in per unit, while phase angle
“centers” about 0 in units of radians. Clearly, the subtraction
(approximately) removes the offset.

Use of a properly sized time window for the PMU data
matrix has significant impact on the result. Recognizing that
sampling/reporting rates may vary in different PMU imple-
mentations, the time window should be considered in two
different aspects: One in terms of time period, and the other
in terms of number of samples. For this particular study, the
sampling/reporting time in PMU is assumed fixed, and time
period or number of samples will be determined if one of
them is defined. In considering the appropriate size for the
time window of the PMU data matrix, there are trade-offs to
be considered. Algebraically, a large window size would seem
preferable, to provide dependable estimation of major axis.
However, if the window is so large that the system can expe-
rience significant change in operating point over the time of
the window, the underlying assumption of capturing linearized,
“small signal” behavior comes into question. Moreover, a long
window clearly imposes a higher computational cost for SVD
evaluation, due to the larger matrix size. For small window
size, one may view the SVD result as delivering a more recent
status of the system with low computational cost, but it can
not be as accurate as the large window size. This trade-off
is illustrated in Fig. 5, which shows how the largest singular
value (LSV) changes as time window increases. The vertical
line indicates when network topology changes and solid line
is the LSV of inverse Jacobian. If the step change/surge of
the measure is defined as “signal” indicative of a topology
change event, and the measure in normal operation is defined
as “noise”, then larger time windows have higher “Signal-
to-Noise Ratio” relative to smaller time windows. It should
be noted that the LSV of PMU data array increases as time-
window increases but increments of the LSV are substantially
reduced even though the time-window increases linearly. This
implies that the additional samples in the PMU data array may
not have significant impact on the estimation compared to the
others after some samples are already accumulated in the data
array.

It is also supported by the singular vector analysis. Suppose
one wishes to characterize the number of components of a
singular vector that are significantly different from zero; we
will term this the “main dimension.” In particular, consider a
main dimension defined as the number of component required
for sum of squares(S.O.S), 2-norm squares, of normalized
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Fig. 5. Effects of Timewindow variation on LV of PMU data array in 30
Hz sampling rate

Fig. 6. Effects of Timewindow variation on LV of PMU data array in 0.1
Hz sampling rate

singular vector to be greater than 0.9. For the cases examined
here, the main dimension of the singular vector associated
with the LSV of PMU data array proves to be relatively small
relative to the overall dimension of the vector; i.e., many
components are essentially zero. In table I, mean of main
dimension is computed with 8640 PMU data samples from
IEEE 14, 118, and 300 Bus system.

Figure 7, 8, and 9 show another aspect of this phenomena.
Rank of a matrix can be defined as the number of singular
values above a certain threshold. Figure 7, 8, and 9 show rank
of the PMU data array in IEEE 14, 118, and 300 bus system
with various thresholds. The ranks are saturated after they
reach a certain number. Although rank with small thresholds

tend to result in higher rank of the array and large rank
thresholds require wide time window to saturate, there exists
a property such that matrix rank stays at certain number
even with large timewindow. It supports the fact that any
additional samples may not have significant information to
estimate the voltage stability after a certain threshold, and the
saturation point is reached approximately when the number
of timewindow is equal to the number of row of PMU data
array. For example, there are 26/234/598 state variables(except
slack bus and two variables from each bus) in 14/118/300
Bus system and the rank is staurated approximately when the
number of sample is 26/234/598.

TABLE I
MAIN DIMENSION OF SINGULAR VECTOR ASSOCIATED WITH THE

LARGEST SINGULAR VECTOR IN IEEE 14, 118, AND 300 BUS SYSTEM.

Bus Type Data Type Mean of Main Dim. Total Dim.
(S.O.S>0.9)

Full PMU 12.60 26
14 Bus Vmag PMU 6.77 13

Angle PMU 7.10 13
Full PMU 62.63 234

118 Bus Vmag PMU 28.23 117
Angle PMU 61.93 117
Full PMU 236.00 598

300 Bus Vmag PMU 50.30 299
Angle PMU 236.00 299

Fig. 7. Rank with various threshold VS. Time window in IEEE 14 Bus

Since voltage stability index from the proposed algorithm
should be calculated in near time, low computational cost for
SVD computation is essential. The best algorithms for full
SVD computation of m-by-n matrix is O(nm2 + n3) [16].
The orthogonalization/factorization based algorithm is imple-
mented in LAPACK [16], [24]. However, iterative method
for computing SVD such as Lanczos algorithm and Arnoldi’s
algorithm can substantially reduce its computation time if a
small number of the largest singular values (or eigenvalues)
and singular vectors (or eigenvectors) in an array is of our main
concern. Lanczos algorithm is originated from power-method
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Fig. 8. Rank with various threshold VS. Time window in IEEE 118 Bus

Fig. 9. Rank with various threshold VS. Time window in IEEE 300 Bus

to find eigenvalues and eigenvectors of a square matrix or
singular values and singular vectors of a rectangular matrix.
The power method for computing eigenvalues/vectors of n-
by-n B can be summarized as follows: 1) Start with random
vector x0 ∈ <n. 2) Compute xi+1 = Bxi 3) Iterate step 2)
until xi+1 − xi < tolerance. Then

xi+1

||xi||
is the normalized

eigenvector corresponding to the largest eigenvalue, which is
2-norm of B

xi+1

||xi||
. For next largest eigenvalue and eigenvector,

go back to step 1) but start with any y
0
∈ <n that is

orthogonal to previous eigenvector. For singular value/vector
of a rectangular matrix, A, use the fact that AAT , ATA are
square matrices. Lanzcos algorithm and Arnoldi’s algorithm
save the vector xi in step 2) for Gram-Schmidt process to
re-orthogonalize them into a basis spanning Kylov subspace.
They are implemented in ARPACK [25], [26], [27].

The lanczos algorithm is a little bit slower than the or-

thogonalization/factorization algorithm for full SVD on the
relatively small size of matrix. However, as the matrix size
increases, the power method based algorithm outperforms the
the orthogonalization/factorization based algorithm as shown
in table II. It shows the computation time required to com-
pute a series of the singular values from 8640 PMU data.
“svds”(Matlab function) is based on the lanczos algorithm in
ARPACK, and “svd”(Matlab function) uses the orthogonal-
ization/factorization algorithm in LAPACK. The third column
in the table II shows the case of computing only the largest
singular value/vector with power-method.

TABLE II
COMPARISON OF SVD COMPUTATION TIME FOR PROCESSING 8640 PMU

DATA SAMPLES IN THE DIFFERENT ALGORITHMS. (SEC)

6 SVDs Full SVD Power Method
System CPU/RAM svds svd Programmed

Core 2/4GB 49.13 5.82 1.25IEEE 14
i5/6GB 34.937 2.74 0.7

Core 2/4GB 164.87 74.94 31.72IEEE 118
i5/6GB 97.72 38.869 9.092

Core 2/4GB 298.597 415.33 225.092IEEE 300
i5/6GB 146.6 208.434 83.476

For computing a series of a small number of largest singu-
lar values from arrays sequentially updated by a rank-one
modification, even lower computation time can be achieved.
The author in [28] compares the SVD updating with rank-one
modification to Lanczos algorithm. It shows that the scheme
in [28] is about 10 times faster than Lanczos algorithm in low
rank 1000-by-1000 matrix and even better performance for
low rank 3000-by-3000 matrix. This scheme can be applied
to our method since the PMU data array is typically low rank
as shown in Fig. 7, 8, 9.

Numerical Study Results

Proposed Method for Voltage Stability assessment

As initial empirical evidence of the performance of this
measure, time-series power flow cases were computed for
a 24-hour load cycle. As mentioned, for estimating power-
flow conditioning, the base state is chosen as a “low stress”
operating point; typically a lowest normal loading condition.
For the first test, we compute the largest singular value of the
inverse Jacobian for each operating point in the series, and
the largest singular value of the (pseudo-) PMU data array
as described in previous section. A two-degree-of-freedom fit
is performed, to allow for difference in offset and scaling. A
typical result is shown in Fig. 10, 11, and 12 for IEEE 14,
118, and 300 Bus system.

Figure 10, 11, and 12 show that the proposed algorithm is able
to assess power flow conditioning only with the measurements.
While larger networks may show slight degradation of quality
of fit, experience to date has shown very good fits.

6



Fig. 10. Largest singular value comparison between Jacobian Inverse and
PMU data in IEEE 14 Bus

Fig. 11. Largest singular value comparison between Jacobian Inverse and
PMU data in IEEE 118 Bus

Proposed Method for Topology Change Detection

As mentioned, the proposed method is also used to detect
network topology change by setting the base state to be the
operating point based on the predicted “load cycle”. Hence, the
differences computed to build the array for SVD computation
may be interpreted as the deviation of measured quantities
away from the power flow solution corresponding to the
load cycle prediction, with the predicted network topology.
This suggests that when actual measurements result from a
physical topology different from that predicted, large jumps
away from the base case may be observed. It should be noted
that only voltage magnitude part of PMU data is used to
construct PMU data array for topology change detection. The
voltage magnitude are more sensitive to topology change than
phase angle because they controlled in generator bus as long

Fig. 12. Largest singular value comparison between Jacobian Inverse and
PMU data in IEEE 300 Bus

as the reactive power injections/withdrawals are within their
limits and they does not usually change abruptly in normal
opearating condition.

Fig. 13. Time Series of the largest singular value of Jacobian Inverse and
PMU data in IEEE 14 Bus

Figure 13 again compares the largest singular value of the
exactly computed Jacobian inverse, versus the “measurement-
only” PMU-based SVD measure. Note that the topology
change events clearly appear as step changes in the inverse
Jacobian’s largest singular value. Given the nature of the base
case, it is worthwhile to emphasize that the PMU-based SVD
measure will typically increase for any change, even as the
inverse Jacobian’s singular value may dip (observe behavior
in the interval from hour 11 to hour 13). The reason for the first
two events are relatively small to the others is that the change
incident happens between bus 2 and 5 and bus 2 is generator
bus and bus 5 is surrounded by generator buses. Therefore, the
voltage magnitude in bus 2 and 5 are maintained and change a
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little even with the topology change and results in a small step
change in SVD measure. However, this is not typical case for
practical system and the SVD measure more clearly captures
the topology change in larger system. Also, it should be noted
that the “signals” for first two events are 10-15 times larger
than normal operation measure even though it looks small in
the Fig. 13.

Fig. 14. Contour (Bottom) and 3D Plot for Time Series of the left singular
vector from voltage magnitude parts of PMU data in IEEE 14 Bus

Figure 14 examines the corresponding left singular vector, and
shows that there are corresponding sudden surges or dips with
topology changes. It is true that there are some peaks for a
short amount time even in normal operation, but they can be
filtered by the information from the largest singular value. The
areas highlighted by circles in Fig. 14 suggest that the left
singular vector captures information regarding the buses most
affected by the topology change events, correctly indicating
that the study case had changes incident on bus 5 for the first
two events, bus 14 for the 3rd event, and bus 11 for last two
events.

Similar test is performed in IEEE 118 Bus system and the
results are shown in Fig 15. The proposed measure also
successfully captures the changes in the system. It should be
noted that the measure is more sensitive to the change than
the inverse Jacobian’s singular value.

Also, the left singular from voltage magnitude parts is exam-
ined for locating the topology changes. It is worth to note that
the left singular vector represent the direction of major axis
of “output ellipse”, and it shows which buses are contributing
the largest singular value. Therefore, it represents which bus
is more vulnerable to the load variation in normal operation.
From Fig. 16, it is possible to locate not only where the
network topology change is occurred (highlighted by circle)
but also where the vulnerable bus is (Bus 44 and 45 relatively
stand up in normal operation).

Fig. 15. Time Series of the largest singular value of Jacobian Inverse and
PMU data in IEEE 118 Bus

Fig. 16. Contour (Bottom) and 3D Plot for Time Series of the left singular
vector from voltage magnitude parts of PMU data in IEEE 118 Bus

Figure 17 and 18 clearly indicate that bus 23 mostly con-
tributes to the largest singular value in the first event and bus
71 for the last event, which implies topology errors occur in
the buses.

In IEEE 300 bus system, the proposed measure is able to
detect the topology changes even though they are not shown
in the largest singular value from Jacobian inverse. Figure 19
shows that there are 4 line incidents for 24 hours and the
proposed measure sucessfully identifies them but the index
from Jacobian inverse cannot. Similar to two previous cases,
the time series of the left singular vector associated with the
largest singular value are shown in Fig. 20, 21, and 22. In
figure 21, there are 3 buses most affected by the first incident,
which are bus 96, 97 and 245. Magnitude of the left singular
vector for bus 96 and 245 surge upwards and bus 97 dips down.
The actual line incident happens between bus 96 and 97, but
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Fig. 17. Parts of 3D Plot for Time Series of the left singular vector from
voltage magnitude parts of PMU data in IEEE 118 Bus

Fig. 18. Parts of 3D Plot for Time Series of the left singular vector from
voltage magnitude parts of PMU data in IEEE 118 Bus

the bus 245 also stands up because it is directly connected to
bus 97.

Conclusion

Many of trends today, from markets to intermittent renewable
integration, suggest the operating conditions in electric power
networks are becoming more volatile. This suggests a need
for tools to tracking system stability margins and identifying
topology errors on time scales faster than state estimator
updates. The algorithm presented in this paper seeks to serve
this need through a model-free voltage stability indicator that
also shows promise as topology change detector in near real
time, using only measurement information that is becoming
widely available through PMUs. Also, the proposed indicator
is able to detect any topology change in the network and
locate the events from singular value and vector analysis. This

Fig. 19. Time Series of the largest singular value of Jacobian Inverse and
PMU data in IEEE 300 Bus

Fig. 20. Contour (Bottom) and 3D Plot for Time Series of the left singular
vector from voltage magnitude parts of PMU data in IEEE 300 Bus

suggests an opportunity to control the system operating point
with high resolution data, which is essential for stabilizing
volatile system.
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