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Abstract

For the non-linear power flow problem with PQ and re-

active power limited slack and PV buses, we present two

sufficient conditions under which the specified set of non-

linear algebraic equations has no solution. The first condition

uses a semidefinite programming relaxation of the power flow

equations along with binary variables to model the generators’

reactive power capabilities. As a byproduct, this condition

yields a voltage stability margin to the power flow solvability

boundary. The second condition formulates the power flow

equations, including generator reactive power limits, as a

system of polynomials and uses real algebraic geometry and

sum of squares programming to create infeasibility certificates

which prove power flow insolvability.

Introduction

Power flow studies are the cornerstone of power system analy-

sis and design. They are used in planning, operation, economic

scheduling, transient stability, and contingency studies. The

power flow equations model the relationship between voltages

and active and reactive power injections in a power system.

The non-linear power flow equations may not have any solu-

tions (the power flow equations are said to be insolvable). That

is, it is possible to choose a set of power injections for which

no valid corresponding voltage profile exists. It is also possible

that no power flow solutions have reactive power injections

that can be supported by the generators. That is, enforcing

reactive power limits may result in power flow insolvability

within the generators’ capabilities [1]–[3]. Practical cases that

may be insolvable include long-range planning studies for

which the studied system may not be able to support projected

loads and contingency studies for which the loss of one or

more components may yield a network configuration that is

similarly inoperable for the specified injections.

This paper presents two sufficient conditions that, when sat-

isfied, rigorously classify a specified case as insolvable. The

first condition uses mixed-integer semidefinite programming

and yields a voltage stability margin that characterizes a

distance to the power flow solvability boundary [4]. The

second condition uses real algebraic geometry and sum of

squares programming [5] to generate infeasibility certificates

which prove power flow insolvability.

In engineering practice, large-scale non-linear power flow

equations are typically solved using iterative numerical tech-

niques, most commonly Newton-Raphson or its variants [6].

These rely on an initial guess of the solution voltage mag-

nitudes and angles and are only locally convergent. They

generally do not converge to a particular solution from an

arbitrary initial guess and may show very high sensitivity and

highly complex behavior with respect to initial conditions for

certain study cases. It is well recognized that the power flow

equations may generally have a very large number of solutions;

for example, the work of [7] establishes cases for which

the number of solutions grows faster than polynomial with

respect to network size. For cases having multiple solutions,

each solution has a set of initial conditions that converges to

that solution in Newton-Raphson iteration. Characterization of

Newton-Raphson regions of attraction was the subject of [8],

which demonstrated cases for which the boundaries of these

attractive sets were factual in nature. So despite the fact

that very large-scale problems (10’s or 100’s of thousands of

unknowns) are solved in power engineering practice, as param-

eters move outside of routine operating ranges the behavior of

these equations can be highly complex. Convergence failure

for a Newton-Raphson-based commercial software package is

far from a reliable indication that no solution exists.

The properties of the Newton-Raphson iteration guarantee

(under suitable differentiability assumptions) that the iteration

must converge to a solution for an initial condition selected

in a sufficiently small neighborhood about that solution [9].

However, when a selected initial condition (or some set of

multiple initial conditions) fails to yield convergence, the user

of a Newton-Raphson-based software package is left with an

indeterminate outcome: does the specified problem have no

solution, or has the initial condition(s) simply failed to fall

within the attractive set of a solution that does exist?

Development of conditions guaranteeing power flow solution

existence has been an active topic of study. For example, [10]

describes sufficient conditions for power flow solution ex-

istence. However, as sufficient conditions, these are often

conservative: a solution may exist for a much larger range

of operating points than satisfy the sufficient conditions.

Other work on sufficient conditions for power flow solvability

includes [11], which focuses on the decoupled (active power-

voltage angle, reactive power-voltage magnitude) power flow

model. Reference [12] describes a modified Newton-Raphson
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iteration tailored to the type of ill-conditioning that can appear

in power systems problems. In more recent work, [13] provides

two necessary conditions for saddle-node bifurcation based on

lines reaching their static transfer stability limits; however, this

work does not yet provide a test for power flow solvability

or define a distance to the power flow solvability boundary.

Further, these papers do not consider generators with reactive

power limits; power flow equations identified as solvable under

the conditions proposed in these works may not have any

solutions within the generators’ reactive power capabilities.

A measure of the distance to the solvability boundary (the

set of operating points where a solution exists, but small

perturbations may result in the insolvability of the power flow

equations [4]) is desirable to ensure that power systems are

operated with security margins. If a solution does not exist for

a specified set of power injections, a measure of the distance

to the solvability boundary indicates how close the power flow

equations are to having a solution. If a power flow solution

exists, desired margins indicate distances to solution non-

existence at the solvability boundary. Existing techniques for

calculating such margins rely almost universally on Newton-

based, local solution methods. For instance, [14] and [15]

use a Newton-Raphson optimal multiplier approach to find

the voltage profile that yields the closest power injections to

those specified. For solvable sets of power injections, iterative

techniques for finding load margins comprised of the locally

optimal minimum distance to the power flow solvability

boundary are detailed in [16] and [17]. Other approaches

use continuation and/or non-linear optimization to calculate a

locally optimal minimum load shedding necessary for power

flow solvability [18]–[23].

Ideal voltage sources with no limits on reactive power output

often serve as simple generator models. However, reactive

power limits are relevant to power flow solvability since non-

existence of power flow solutions may result from limit-

induced bifurcations [1]–[3].

Recognizing the importance of reactive power limits, common

industry practice determines static voltage stability margins

using repeated power flow calculations to find the “nose point”

of a power versus voltage (“P-V”) curve while monitoring

“reactive margins” on generators (i.e., the margin between the

generator’s reactive power output at a given operating point

and its maximum reactive output). Descriptions of relevant

industry standards can be found in such works as [24]–[26].

Previous work by the authors in this area includes a sufficient

condition for power flow insolvability that yields voltage sta-

bility margins [27]. A semidefinite program is used to evaluate

this sufficient condition. In contrast to existing Newton-based

methods whose conditions for convergence are inherently local

in nature, the semidefinite program in [27] provides a global

solution to the optimization problem that is formulated from

the originally specified power flow equations. However, the

method proposed in [27] has only a rudimentary incorporation

of limits on generator reactive power outputs.

In this paper, we present two sufficient conditions under which

the power flow equations are guaranteed to be insolvable

within the generators’ reactive power limits. The first condition

is an extension of the work in [27] that uses mixed-integer

semidefinite programming (i.e., optimization problems with

both integer and semidefinite matrix constraints) to model re-

active power limited generators. The ability to achieve a global

optimum enables the guarantee of solution non-existence upon

satisfaction of a sufficient condition.

The computation for the first condition provides a power

injection margin to the power flow solvability boundary. This

margin is a non-conservative bound. Thus, for an insolvable

set of specified values, a change in power injections by at

least the amount indicated by the power injection margin

is required for the power flow equations to be potentially

solvable. More precisely, the margin identifies the shortest

distance (as measured by the change in power injections in the

direction of a specified injection profile) to a point at which

the sufficient condition for power flow insolvability fails to be

satisfied.

Current mixed-integer semidefinite programming solvers are

relatively immature, and unlike algorithms for semidefinite

programs, solvers are not assured to run in polynomial time.

However, this is an active area of research, and we anticipate

that more capable algorithms will become available. Existing

tools [28], [29] can solve the proposed formulation for small

power system models, and we discuss potential modifications

that improve the computational tractability of the proposed

formulation with respect to solution algorithms in the litera-

ture [30], [31].

The second sufficient condition for power flow insolvability

uses the concept of infeasibility certificates from the field

of real algebraic geometry [5]. Infeasibility certificates for

polynomial equations are calculated using sum of squares de-

compositions that are themselves computed with semidefinite

optimization programs. Specifically, infeasibility certificates

use the Positivstellensatz theorem, which states that there

exists an algebraic identity to certify the non-existence of real

solutions to every infeasible system of polynomial equalities

and inequalities [5]. This theorem does not require any as-

sumptions about the system of polynomials. Since the power

flow equations can be expressed as a system of polynomial

equalities, infeasibility certificates can be directly applied to

power flow problems. Further, this paper formulates limits on

generator reactive power outputs as a system of polynomial

equalities and inequalities and thus provides a means for

extending the theory of infeasibility certificates to power flow

problems with these limits.
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The organization of this paper is as follows. We first give an

overview of the power flow equations. We then describe the

first sufficient condition for power flow insolvability and define

a power injection margin. Next, we provide an overview of

infeasibility certificates and sum of squares programming and

describe the second proposed sufficient condition. Numeric

examples using standard test systems are then provided. We

conclude with a discussion of future work.

Power Flow Equations Overview

The power flow equations describe the sinusoidal steady state

equilibrium of a power network, and hence are formulated in

terms of complex “phasor” representation of circuit quantities

(see, for example, Ch. 9 of [32]). The underlying voltage-to-

current relationships of the network are linear, but the nature of

equipment in a power system is such that injected/demanded

complex power at a bus (node) is typically specified, rather

than current. The relation of interest is between the active

and reactive power injected at each bus and the complex

voltages at each bus, and hence the associated equations are

non-linear. Using a rectangular representation for complex

voltages (Vi = Vdi + jVqi), and rectangular “active/reactive”

representation of complex power (Pi + jQi), the power bal-

ance equations at bus i are given by

Pi = fPi (Vd, Vq) =Vdi

n
∑

k=1

(GikVdk −BikVqk)

+ Vqi

n
∑

k=1

(BikVdk +GikVqk) (1a)

Qi = fQi (Vd, Vq) =Vdi

n
∑

k=1

(−BikVdk −GikVqk)

+ Vqi

n
∑

k=1

(GikVdk −BikVqk) (1b)

where Y = G+ jB is the network admittance matrix and n

is the number of buses in the system.

The rectangular voltage components must additionally satisfy

the voltage magnitude equation.

V 2
i = fV i (Vd, Vq) = V 2

di + V 2
qi (1c)

Using the voltage at the slack bus Vslack = Vd,slack+jVq,slack
as an angle reference, Vq,slack = 0.

To represent typical behavior of equipment in the power

system, each bus is classified as PQ, PV, or slack according to

the constraints imposed. PQ buses, which typically correspond

to loads and are denoted by the set PQ, treat Pi and Qi

as specified quantities and enforce the active power (1a)

and reactive power (1b) equations at that bus. PV buses,

which typically correspond to generators and are denoted

by the set PV , specify a voltage magnitude Vi and active

power injection Pi and enforce the active power and voltage

magnitude equations (1a) and (1c). The associated reactive

power Qi may be computed as an “output quantity” via (1b).

Finally, a single slack bus is selected with specified Vdi and

Vqi (typically chosen such that the reference angle is 0◦). The

set S denotes the slack bus. The active power Pi and reactive

power Qi at the slack bus are determined from (1a) and

(1b); network-wide conservation of complex power is thereby

satisfied.

Additionally, generator reactive power outputs must be within

specified limits. If a generator’s reactive power output is

between the upper and lower limits, the generator maintains a

constant voltage magnitude at the bus (i.e., the bus behaves like

a PV bus). If a generator’s reactive power output reaches its

upper limit, the reactive power output is fixed at the upper limit

and the bus voltage magnitude is allowed to decrease (i.e.,

the bus behaves like a PQ bus with reactive power injection

determined by the upper limit). If the generator’s reactive

power output reaches its lower limit, the reactive power output

is fixed at the lower limit and the voltage magnitude is

allowed to increase (i.e., the bus behaves like a PQ bus with

reactive power injection determined by the lower limit). Fig. 1

shows the reactive power versus voltage characteristic for this

generator model with a voltage setpoint of V ∗, lower reactive

power limit of Qmin, and upper reactive power limit of Qmax.

0

Voltage Magnitude

R
e
a
c
ti
v
e
 P

o
w

e
r

Reactive Power versus Voltage Magnitude Characteristic

V
∗

Q
min

Q
max

Fig. 1. Reactive Power versus Voltage Magnitude Characteristic
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A Sufficient Condition for Power Flow Insolv-

ability Using Mixed-Integer Semidefinite Pro-

gramming

Mixed-Integer Semidefinite Programming Formulation for a

Voltage Stability Margin

This section first formulates a mixed-integer semidefinite pro-

gram to calculate a voltage stability margin that incorporates

generator reactive power limits. Matrices employed in the

formulation are defined as

Yk =
1

2

[

Re
(

Yk + Y T
k

)

Im
(

Y T
k − Yk

)

Im
(

Yk − Y T
k

)

Re
(

Yk + Y T
k

)

]

(2)

Ȳk = −
1

2

[

Im
(

Yk + Y T
k

)

Re
(

Yk − Y T
k

)

Re
(

Y T
k − Yk

)

Im
(

Yk + Y T
k

)

]

(3)

Mk =

[

eke
T
k 0

0 eke
T
k

]

(4)

where ek denotes the kth standard basis vector in R
n, the

matrix Yk = eke
T
kY, and superscript T indicates the transpose

operator. Notation is adopted from [33]. To write the semidef-

inite relaxation, first define the vector of voltage coordinates

x =
[

Vd1 Vd2 . . . Vdn Vq1 Vq2 . . . Vqn
]

(5)

Then define the rank one matrix

W = xxT (6)

The active and reactive power injections at bus i are then given

by tr (YiW) and tr
(

ȲiW
)

, respectively, where tr indicates

the matrix trace operator (i.e., sum of the diagonal elements).

The square of the voltage magnitude at bus i is given by

tr (MiW).

Replacement of the non-convex rank constraint (6) by the

less stringent constraint W � 0, where � 0 indicates

the corresponding matrix is positive semidefinite, yields the

convex semidefinite relaxation. This relaxation gives a lower

bound for the globally optimal solution of the rank constrained

problem. Further, a solution to the semidefinite relaxation has

zero duality gap if and only if the rank condition (7) is satisfied

(i.e., the relaxation is “tight”).

rank (W) ≤ 2 (7)

For a solution with zero duality gap, a unique rank one matrix

W can be recovered by enforcing the known voltage angle at

the slack bus [33].

Previous work [27] uses the semidefinite relaxation to define

margins to the power flow solvability boundary. The additional

flexibility provided by mixed-integer programming is used to

extend this work to model reactive power limited generators.

The mixed-integer semidefinite programming formulation is

max η subject to (8a)

tr (YkW) = Pk η ∀k ∈ {PQ, PV} (8b)

tr
(

ȲkW
)

= QDk η ∀k ∈ PQ (8c)
{

tr
(

ȲkW
)

≥ Qmax
k ψUk +Qmin

k (1− ψUk)

tr
(

ȲkW
)

≤ Qmin
k ψLk +Qmax

k (1− ψLk)
∀k ∈ {PV, S} (8d)

{

tr (MkW) ≥ (V ∗
k )2 (1− ψUk)

tr (MkW) ≤ (V ∗
k )2 (1− ψLk) + dψLk

∀k ∈ {PV, S} (8e)

ψLk + ψUk ≤ 1 ∀k ∈ {PV, S} (8f)

∑

k∈{PV,S}

(ψLk + ψUk) ≤ ng − 1 (8g)

W � 0 (8h)

ψUk ∈ {0, 1} ψLk ∈ {0, 1} ∀k ∈ {PV, S} (8i)

where d is a large scalar such that the upper limit of (8e) is

non-binding when ψLk = 1 and the scalar ng is the number

of generators (i.e., the number of slack and PV buses). Let

ηmax be a globally optimal solution to (8).

Generator reactive power and voltage magnitude limits are

enforced by equations (8d), (8e), (8f), and (8g). When the

binary variable ψUk is equal to one, the upper reactive power

limit of the generator at bus k is binding. Accordingly, (8d)

fixes the reactive power output at the upper limit and (8e) sets

the lower voltage magnitude limit to zero. When the binary

variable ψLk is equal to one, the lower reactive power limit

of the generator at bus k is binding. Accordingly, (8d) fixes

the generator reactive power output at the lower limit and

(8e) removes the upper voltage magnitude limit. When both

ψUk = 0 and ψLk = 0, (8d) constrains the reactive power

output within the upper and lower limits and (8e) fixes the

voltage magnitude to the specified value V ∗
k . Consistency in

the reactive power limits is enforced by (8f); a generator’s

reactive power output cannot simultaneously be at both the

upper and lower limits. Finally, reactive power balance is

enforced by (8g).

Note that the formulation (8) gives a power injection margin

in the specific direction of a uniform, constant-power-factor

injection profile; however, the formulation can be extended to

consider the impact of non-uniform power injection profiles.

Specifically, a semidefinite relaxation can be written for any

choice of the right hand side of the power injection con-

straints (8b) and (8c) that is a linear expression of active and

reactive power injections Pk and Qk, the square of voltage
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magnitude (V ∗
k )

2
, and the degree-of-freedom η. For instance,

with nominal power injections Pk0 and Qk0, choosing the

expressions

Pk0 + η (9a)

Qk0 + tan (φk) η (9b)

for the right hand sides of the active power constraint (8b) and

reactive power constraint (8c), respectively, yields an additive

power injection margin for the injection profile with specified

power factor angles φk.

Although alternate right-hand-side expressions allow for cal-

culating the power injection margin for non-uniform injection

profiles, the insolvability condition that is described next is

not applicable for all injection profiles (e.g., a right hand side

specifying an injection profile with a non-uniform power factor

angle φk as in (9)).

Optimality Considerations and a Sufficient Condition for

Power Flow Insolvability

The solution to (8), ηmax, is a voltage stability margin to

the power flow solvability boundary with consideration of

generator reactive power limits. In contrast to traditional iter-

ative methods that may only obtain a locally optimal solution,

the formulation (8) yields a globally optimal voltage stability

margin.

It is important to note that ηmax is, in general, a non-

conservative bound. Thus, for an insolvable set of specified

values, ηmax indicates the least factor by which the power

injections must change in the specified profile for the power

flow equations to be potentially solvable. For a solvable set

of specified values, ηmax indicates the greatest factor by

which the power injections can change while the power flow

equations remain potentially solvable.

The non-conservativeness of the bound given by ηmax is

a result of the possibility that a solution to (8) does not

satisfy the rank condition of the semidefinite programming

relaxation (7) (i.e., the solution to (8) exhibits non-zero duality

gap). If a solution to (8) satisfies the rank condition and

thus exhibits zero duality gap, a power flow solution can be

obtained [33]. This power flow solution is the furthest possible

point (i.e., the “nose point”) of a P-V curve constructed with

consideration of generator reactive power limits. Since (8)

can be solved to global optimality, a solution satisfying the

rank condition is guaranteed to locate the furthest possible

point on the P-V curve. (This is an advantage over traditional

iterative approaches which are not guaranteed to locate the

furthest possible point.) For solutions satisfying the rank

condition (7), the voltage stability margin ηmax provides the

exact distance to the power flow solvability boundary rather

than a non-conservative bound.

A globally optimal ηmax provides a sufficient but not neces-

sary insolvability condition for the power flow equations with

generator reactive power limits. Specifically, since ηmax is a

measure of the distance to the power flow solvability boundary,

ηmax < 1 (10)

is a sufficient but not necessary condition indicating that

the specified set of power flow equations has no solution.

Conversely,

ηmax ≥ 1 (11)

is a necessary but not sufficient condition for power flow

solvability. The conditions (10) and (11) hold regardless of

the rank properties of the solution to (8) (i.e., the semidefinite

relaxation need not be “tight”).

Note that unlike previous work [27] which develops power

injection margins using a provably feasible optimization prob-

lem, the formulation in (8) does not have a feasibility proof.

In other words, it is possible to specify a set of power flow

equations for which the optimization problem (8) has an empty

feasibility set; the formulation (8) can fail when an injection

profile is specified that does not have a value of η such that

the power injections have a valid corresponding voltage profile

(i.e., the power flow equations are insolvable for any choice

of η in (8)).

Computational Considerations

Computational challenges exist in solving mixed-integer

semidefinite programs. Without considering the integer con-

straints, the computational requirements of a semidefinite

relaxation of the power flow equations scales with square of

the number of buses. Advances in matrix completion decom-

positions that exploit power system sparsity in semidefinite

program relaxations can be applied to ameliorate this chal-

lenge [34]–[36]. Thus, each semidefinite program evaluation

internal to the mixed-integer semidefinite program solver can

be performed significantly more quickly.

The integer constraints introduce added difficulty, and mixed-

integer semidefinite programming algorithms are not as mature

as, for instance, mixed-integer linear programming algorithms.

The existing mixed-integer semidefinite programming solvers

BARON [28] and YALMIP [29] are suited for small problems.

For instance, YALMIP’s branch-and-bound solver is capable

of calculating the voltage stability margin using (8) for IEEE

test systems [37] with sizes up to 57 buses.

The algorithms described in [30] and [31] claim to be capable

of solving large mixed-integer semidefinite programs. The
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algorithm proposed in [30] is limited by the need to symbol-

ically invert certain submatrices of the positive semidefinite

constrained matrix, which is computationally intractable for

large matrices. However, this limitation may be overcome for

power systems applications by exploiting the sparsity inherent

to power system models. Specifically, the matrix completion

techniques described in [34]–[36] create a block-diagonal

positive-semidefinite-constrained matrix; since each block can

be separately inverted, the algorithm described in [30] may be

computationally tractable for large power systems.

An additional technique for improving the computational

tractability of the proposed method employs a semidefinite

relaxation of the integer constraints (8i). This relaxation uses

the fact that the binary constraint ψ ∈ {0, 1} is equivalent

to the quadratic constraint ψ2 − ψ = 0. Define the constant

matrix N as

N =

[

0 − 1

2

− 1

2
1

]

(12)

If the 2 × 2 symmetric matrix R is rank one and R11 = 1,

then R22 =
(

R12
)2

, where superscript cd indicates the

(c, d) entry of the corresponding matrix. Then the equation

tr (NR) = R22 − R12 = 0 implements the quadratic con-

straint
(

R12
)2
−R12 = 0. For reactive power limited generator

bus i, semidefinite relaxations of the quadratic equations (i.e.,

replacing the requirement rank (R) = 1 with the less stringent

R � 0) are then implemented with the constraints given in

(13), which replace the binary-constraints (8i).

tr (NRUi) = 0 tr (NRLi) = 0 (13a)

R11
Ui = 1 R11

Li = 1 (13b)

R12
Ui = ψUi R12

Li = ψLi (13c)

RUi � 0 RUi � 0 (13d)

The positive semidefinite constraint (13d) relaxes the rank one

requirement on the RUi and RLi matrices. See reference [38]

for further discussion on this relaxation technique.

Relaxation of the integer constraints yields an upper bound,

denoted as η̄max, on the distance to the power flow solvability

boundary considering reactive power limited generators. Ac-

cordingly, the sufficient condition for power flow insolvability

(10) holds with this relaxation (i.e., η̄max ≤ 1 is a sufficient

condition for power flow insolvability). If the solution to the

relaxed problem has rank one RLi and RUi matrices for

all reactive power limited generator buses, the semidefinite

relaxation of the integer constraints is “tight.” With additional

satisfaction of the rank condition for W (7), the proposed for-

mulation gives the exact distance to the power flow solvability

boundary.

Unlike the relaxation of the power flow equations, the relax-

ation of the integer constraints is typically not “tight” and, as

will be shown later via numeric examples, may substantially

overestimate the distance to the power flow solvability bound-

ary. We therefore propose the following method for obtaining

a lower bound on the distance to the power flow solvability

boundary. First, calculate η̄max with relaxed integer constraints

from (13). Then, using the solution to the relaxed problem, set

all values of ψUi and ψLi that are over a specified threshold

to one with the remainder set to zero. Solve the semidefinite

program (8) with the specified values for ψUi and ψLi. If the

resulting solution has non-zero duality gap (i.e., the solution

satisfies (7)), the solution provides a lower bound, denoted as

ηmax, on the distance to the power flow solvability boundary

considering reactive power limited generators. If the rank

condition (7) is not satisfied, the solution does not provide a

bound on the distance to the power flow solvability boundary.

A Sufficient Condition for Power Flow Insolv-

ability Using Infeasibility Certificates

The second sufficient condition for power flow insolvability

uses real algebraic geometry and sum of squares program-

ming to develop infeasibility certificates. After providing an

overview of infeasibility certificate theory, we formulate reac-

tive power limits as a system of polynomial inequalities and

equalities. This enables application of the Positivstellensatz

theorem, which states that there exists an algebraic identity to

certify the non-existence of real solutions to every infeasible

system of polynomial equalities and inequalities [5].

Overview of Infeasibility Certificate Theory

We first introduce the theory used in constructing infeasi-

bility certificates, specifically the Positivstellensatz theorem

and the relationship between sum of squares and semidefinite

programming. See [5] for a more detailed overview of this

material.

Notation and several definitions are required for understanding

the infeasibility certificate theory. This theory applies to a

ring of multivariate polynomials with real coefficients, which

is denoted as R [x] for the variables {x1, . . . , xn}. Some

polynomials have a sum of squares decomposition. These

polynomials can be written as

p (x) =
∑

i

q2i (x) , qi ∈ R [x] (14)

Note that this decomposition is not necessarily unique. Polyno-

mials with sum of squares decompositions have the important

property that they are non-negative for all values of x.

Polynomials with sum of squares decompositions can always

be written in the form of a semidefinite program [5]. Define

the vector z using monomials of x.
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z =
[

1 x1 x2 . . . xn x21 . . . x1xn x22 . . .
]T

(15)

Then any polynomial with a sum of squares decomposition

can be written as

p (x) = zTQz (16)

where Q � 0. Thus, sum of squares decompositions can be

calculated using semidefinite optimization techniques.

Two definitions necessary for creating infeasibility certificates

are next introduced. First, the ideal of a set of multivariate

polynomials {f1, . . . , fm} is defined as

ideal (f1, . . . , fm) =

{

f | f =

m
∑

i=1

tifi, ti ∈ R [x]

}

(17)

Note that every polynomial in ideal (f1, . . . , fm) is zero

at the zeros of the polynomials f1, . . . , fm. That is,

f1 (x0) = 0, . . . , fm (x0) = 0 implies that any polynomial

in ideal (f1, . . . , fm) is zero when evaluated at x0.

Next define the cone of the set of multivariate polynomials

{g1, . . . , gr} as

cone (g1, . . . , gr) =






g | g = s0
∑

i

gi +
∑

{i,j}

sijgigj +
∑

{i,j,k}

sijkgigjgk + · · ·







(18)

where the terms s0, sij , sijk, . . . are sum of squares poly-

nomials. Note that every polynomial in cone (g1, . . . , gr) is

non-negative if gk (x) ≥ 0 ∀k.

The Positivstellensatz theorem can then be written as follows.

The set of polynomial equations

fi (x) = 0 i = 1, . . . ,m (19a)

gk (x) ≥ 0 k = 1, . . . , r (19b)

is infeasible in R
n (i.e., the equations admit no real solution)

if and only if there exist polynomials

F (x) ∈ ideal (f1, . . . , fm)

G (x) ∈ cone (g1, . . . , gr)

such that F (x) +G (x) = −1 for all x.

Since F is in ideal (f1, . . . , fm), F (x0) = 0 for any solution

x0 to the equations fi (x0) = 0, i = 1, . . . ,m. Since G

is in cone (g1, . . . , gr), G (y0) ≥ 0 for any point y0 in the

feasible set of gk (y0) ≥ 0, k = 1, . . . , r. Thus, F (x0) +
G (x0) must be non-negative for any x0 that satisfies (19).

However, existence of such an x0 contradicts the fact that

F (x) + G (x) = −1 for all x. Thus, no valid x0 exists and

the set of equations (19) is infeasible.

Infeasibility Certificates for the Power Flow Equations

Polynomial Formulation of the Power Flow Equations In or-

der to generate infeasibility certificates, we must represent the

power flow equations with reactive power limited generators as

a system of polynomial inequalities and equalities. The power

flow equations without consideration of reactive power limited

generators are polynomial equalities in terms of the voltage

components Vd and Vq as shown in (1). We next formulate

the reactive power limit characteristic shown in Fig. 1 as a set

of polynomial equalities and inequalities in the form of (19).

Reactive power limits at the generator bus i are formulated as

fV i = (V ∗
i )

2
− V −

i + V +

i (20a)

Qmax
i − fQi = xi (20b)

V −
i x = 0 (20c)

V +

i

(

Qmax
i −Qmin

i − xi
)

= 0 (20d)

Qmax
i −Qmin

i − xi ≥ 0 (20e)

V +

i ≥ 0, V −
i ≥ 0, xi ≥ 0 (20f)

where the polynomial functions fQi (Vd, Vq) and fV i (Vd, Vq)
are defined in (1b) and (1c), respectively.

The variable xi represents the distance to the upper reactive

power limit for the generator bus i (i.e., xi is a “slack variable”

for this limit). With xi constrained to be non-negative in (20f),

the reactive power generation at bus i is maintained within its

upper limit. Similarly, the distance to the lower reactive power

limit is Qmax
i −Qmin

i − xi, which is constrained to be non-

negative in (20e). Reactive power generation is thus greater

than or equal to the lower limit. With equality constraints

(20a) and (20c), the non-negative variable V −
i allows the

voltage magnitude at bus i to decrease when the reactive

power generation is at its upper limit. Similarly, with equality

constraints (20a) and (20d), the non-negative variable V +

i

allows the voltage magnitude at bus i to increase when the

reactive power generation is at its lower limit. Thus, the set

of equations (20) models the reactive power versus voltage

characteristic shown in Fig. 1.

Infeasibility Certificates for the Power Flow Equations With-

out Considering Reactive Power Limits With a polynomial

formulation, infeasibility can be verified using the Positivstel-

7



lensatz theorem. We first consider the case without reactive

power limits on generators (i.e., generators are modeled as

ideal voltage sources with fixed voltage V ∗
i for any reactive

power output). For this case, the power flow equations are

entirely in the form of equalities. An infeasibility certificate is

found if a polynomial F (Vd, Vq) in the ideal formed by the

power flow equations (1) satisfies

F (Vd, Vq) = −1 (21)

A polynomial in the ideal of the power flow equations has the

form

F (Vd, Vq) = τVq,slack +
∑

i∈{PV,PQ}

λi (fPi − Pi)

+
∑

i∈PQ

γi (fQi −Qi) +
∑

i∈{S,PV}

µi

(

fV i − V 2
i

)

(22)

where Vq,slack is the q-component of the slack bus voltage

and τ , λ, γ, and µ are polynomials (which are not necessarily

sum of squares) associated with the slack bus angle, active

power injection, reactive power injection, and squared voltage

magnitude equations, respectively.

Using the Positivstellensatz theorem, the power flow equations

are insolvable if there exist polynomials τ , λ, γ, and µ

such that F (Vd, Vq) = −1. This condition is evaluated by

attempting to find a sum of squares decomposition for the

polynomial −F (Vd, Vq)− 1 using semidefinite programming.

If such a decomposition exists, the power flow equations are

proven insolvable.

This can be understood using the fact that the polynomial

−F (Vd, Vq)− 1 is negative for any values of Vd and Vq that

are solutions to the power flow equations (1); conversely, a

sum of squares decomposition is non-negative for all values

of Vd and Vq . Thus, the power flow equations are insolvable

if −F (Vd, Vq)− 1 is a sum of squares.

Note that the theory used to develop this result does not pro-

vide any information on the necessary degree of the unknown

polynomials τ , λ, γ, and µ. A need for high-degree polyno-

mials may make this method computationally intractable, and

there are examples of polynomial equations for which high

degrees are necessary to prove infeasibility [39]. Fortunately,

numerical experience suggests that low-degree choices for τ ,

λ, γ, and µ often suffice for proving insolvability of the

power flow equations. For instance, infeasibility certificates

were generated using constant (degree zero) polynomials for

the numeric examples provided in this paper.

Infeasibility Certificates for the Power Flow Equations Consid-

ering Reactive Power Limits To find infeasibility certificates

for the power flow equations with reactive power limited

generators (1a), (1b), and (20), form the polynomial

H
(

Vd, Vq, x, V
+
, V

−) = τVq,slack +
∑

i∈{PV,PQ}

λi (fPi − Pi)

+
∑

i∈PQ

γi (fQi −Qi) +
∑

i∈{S,PV}

{

ψ1i

(

(V ∗
i )

2
− V

−
i + V

+

i − fV i

)

+ ψ2i (Q
max
i − fQi − xi) + ψ3iV

−
i xi

+ ψ4i

(

Q
max
i −Q

min
i − xi

)

V
+

i + s1i

(

Q
max
i −Q

min
i − xi

)

+ s2iV
+

i + s3iV
−
i + s4ixi

}

(23)

where ψ1i, ψ2i, ψ3i, and ψ4i are polynomials and s1i, s2i, s3i,

and s4i are sum of squares polynomials. If the polynomials τ ,

λ, γ, and ψ and sum of squares polynomials s can be chosen

such that −H (Vd, Vq, x, V
+, V −) − 1 is a sum of squares,

the power flow equations with consideration of reactive power

limits on generators are insolvable.

As shown in (23), H is a quadratic function of the variables x,

V +, and V − used to model the reactive power limits as well

as the voltage components Vd and Vq . For an n-bus system

with ng reactive power limited generators and constant (degree

zero) polynomials chosen for τ , λ, γ, ψ, and s, the number

of monomials used in a sum of squares decomposition of H

(i.e., the number of entries in z for the form (16)) is equal to

2n + 3ng + 1. Since the number of entries in the positive

semidefinite matrix Q in (16) scales as the square of the

number of monomials in z, a naı̈ve implementation for creating

infeasibility certificates becomes computationally intractable

for moderate size systems. However, pre-processing the sum

of squares program with the Newton Polytope method [40]

decreases the number of monomials required in the decom-

position, thus reducing the computational burden of the sum

of squares program. Future work includes improving com-

putational tractability; one promising direction is adoption of

pre-processing techniques which exploit power system sparsity

from applications of semidefinite programming to the optimal

power flow problem [34]–[36].

Experience with the IEEE test systems demonstrates that

infeasibility certificates are not found with either degree zero

or degree one polynomials when both upper and lower limits

on generator reactive power outputs limits are modeled. Since

the number of monomials required increases combinatorially

with the degree chosen for the polynomials, choices of larger

degree polynomials are not computationally tractable. How-

ever, infeasibility certificates are found by neglecting lower

reactive power limits on generator outputs. If lower limits on

reactive power outputs are not considered, (20) is simplified by

eliminating equations (20d) and (20e) as well as V +

i in (20a)

and (20f), with corresponding changes to (23). Since lower
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limits on reactive power outputs are rarely responsible for

power flow insolvability through limit-induced bifurcations,

neglecting the lower limits is an acceptable approximation for

the large majority of cases.

Examples

We next apply the mixed-integer semidefinite programming

and the infeasibility certificate formulations to test systems

using optimization codes YALMIP [29] and SeDuMi [41].

Consider a power injection profile where the active and

reactive injections at both PQ and PV buses are increased at

constant power factor as in (8).

We first consider application to the IEEE 14-bus system [37].

The power injection margin calculated from (8) is ηmax =
1.3522. Since the solution obtained from (8) satisfies the

condition rank (W) ≤ 2, the condition (11) indicates that a

power flow solution exists for power injection changes in the

direction of the specified profile up to an injection multiplier

of 1.3522. The insolvability condition (10) indicates that no

solutions exist for power injection multipliers greater than

1.3522.

Although the IEEE 14-bus system is small enough to find a

global optimum to (8) with branch-and-bound techniques, this

test case can also illustrate the use of the integer constraint

relaxations discussed in this paper. With all RUi matrices

being rank two, the relaxation of the integer constraints is

not “tight.” The resulting upper bound η̄max of 5.3589 is well

above the actual maximum value of 1.3522. In an attempt to

obtain a lower bound ηmax, we set to one all integer variables

ψUi and ψLi that are above a threshold of 0.5, with the

remainder set to zero. (For this case, all ψUi = 1 and ψLi = 0
except for the variables corresponding to the slack bus.) The

solution to the resulting semidefinite optimization satisfies the

rank condition (7) and therefore provides a lower bound ηmax

of 1.3522. Thus, the lower bound ηmax for this case is equal

to the actual value of ηmax.

Considering only upper reactive power limits for computa-

tional tractability, an infeasibility certificate is found using

(23) with constant (degree zero) polynomials for an injection

multiplier of 1.36. This infeasibility certificate proves power

flow insolvability for this power injection profile. Note that the

infeasibility certificates do not directly provide a measure of

the distance to the power flow solvability boundary. However,

a measure can be calculated using binary search over loading

cases in the direction of the specified power injection profile

(uniform power injection changes for these examples).

In Fig. 2, these results are verified by tracing the P-V curve

while enforcing generator reactive power limits for the IEEE

14-bus system. When a generator reaches a reactive power

limit, the bus is converted to a PQ bus with reactive power

1 1.1 1.2 1.3 1.4
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

14−Bus System Power vs. Voltage

PQ Bus Injection Multiplier

V
5

P−V Curve

η
max

Infeasibility Certificate Found

Fig. 2. IEEE 14-bus Power Injection Margin with Generator Reactive Power
Limits

System Trace η
max

η̄
max

η
max Infeasibility

Nose Point Certificate

14-bus 1.3522 1.3522 5.3589 1.3522 1.36
30-bus 2.8609 2.8609 3.3218 N/A 2.86
57-bus 1.6486 1.6486 4.4261 1.6486 1.65

TABLE I

STABILITY MARGINS FOR IEEE TEST SYSTEMS CONSIDERING

REACTIVE POWER LIMITED GENERATORS

injection determined by the binding reactive power limit. The

“nose point” of the P-V curve for this system occurs when

all generators, including the generator at the slack bus, reach

upper reactive power limits. Without the ability to enforce

reactive power balance, the power flow solution disappears

in a limit-induced bifurcation at a power injection multiplier

of 1.3522, thus verifying both of the proposed sufficient

conditions for power flow insolvability.

Table I shows the results of the proposed sufficient conditions

for several of the IEEE test systems considering reactive power

limited generators. The columns of Table I show 1) the system

name, 2) the nose point identified by tracing the P-V curve

of the high-voltage, stable power flow solution, 3) the value

of ηmax for a global solution to (8) calculated using branch-

and-bound techniques, 4) an upper bound η̄max resulting from

relaxing the integer constraints with (13), 5) a lower bound

ηmax, and 6) the smallest power injection multiplier for which

an infeasibility certificate is found using constant (degree

zero) polynomials and only upper limits on reactive power

generation. A case for which no lower bound ηmax could be

estimated (i.e., the solution did not satisfy the rank condition

(7)) is denoted with “N/A” in the fifth column of Table I.

Note that the only method with a guarantee of the actual

distance to the power flow solvability boundary is a global

solution to the mixed-integer semidefinite programming for-

mulation (8) that satisfies the rank condition (7). (The rank

condition is satisfied by solutions to the IEEE 14, 30, and 57-
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bus systems.) The remaining methods provide upper bounds

(η̄max, ηmax with a solution that does not satisfy the rank

condition (7), and infeasibility certificates) and lower bounds

(tracing the P-V curve and ηmax with a solution that satisfies

the rank condition (7)) on the actual distance to the power

flow solvability boundary.

The results in Table I verify the proposed sufficient conditions

for power flow insolvability. The voltage margin ηmax from

(8) matches the nose points of the P-V curves. Although the

upper bound η̄max does not give a result close to the nose

point, the lower bound ηmax, when calculable, matches the

actual value ηmax. Finally, infeasibility certificates identify the

nose point for each test case.

Infeasibility certificates can also be found without considering

reactive power limits on generators. As shown in [42] for

the IEEE 118-bus system, there may be loadings for which

no power flow solution is found but the sufficient conditions

for power flow insolvability are not satisfied. Using (22), the

smallest injection multiplier certified infeasible with constant

(degree zero) polynomials is equal to the power injection

margin calculated using the semidefinite-programming-based

sufficient condition for power flow insolvability, which is

equivalent to (8) without limits on reactive power gener-

ation. (Specifically, while the nose point resulting from a

continuation trace of the high-voltage, stable solution is at

an injection multiplier of 3.18, neither sufficient condition for

insolvability is satisfied until an injection multiplier of 3.27.)

This suggests the possibility of a deeper connection between

the infeasibility certificates with degree-zero polynomials and

the semidefinite-programming-based sufficient condition for

power flow insolvability, at least for cases without reactive

power limited generators. (Note that computational limitations

preclude use of higher-order polynomials, which may more

closely identify the nose point.)

Conclusion and Future Work

This paper has presented two sufficient conditions for power

flow insolvability considering reactive power limited genera-

tors. The first condition formulates a mixed-integer semidef-

inite program to determine a global voltage stability margin.

This margin gives a bound on the distance to the power flow

solvability boundary and can be applied to both solvable and

insolvable sets of power injections. For solutions that satisfy

a rank condition, the proposed formulation gives the exact

distance to the solvability boundary (i.e., a guarantee of the

“nose point” of the P-V curve). The margin gives a sufficient

condition for power flow insolvability with consideration of

reactive power limited generators.

The second sufficient condition creates infeasibility certificates

to prove power flow insolvability. Writing the power flow

equations, including reactive power limits on generators, as

a system of polynomial equalities and inequalities allows for

application of the Positivstellensatz theorem from the field

of real algebraic geometry. If a specified polynomial can

be written in sum of squares form, which is determined

using semidefinite programming, the power flow equations are

proven insolvable.

Both sufficient conditions, along with several approximations

to improve computational tractability, are applied to IEEE

test systems. The results show that the sufficient conditions

are capable of identifying the distance to the power flow

solvability boundary.

Future work includes improving the computational tractability

of both sufficient conditions in order to apply the proposed

methods to large-scale system models. The first sufficient

condition may benefit from the application of large-scale

mixed-integer semidefinite program algorithms, such as [30]

and [31]. For the second sufficient condition, exploiting power

system sparsity may allow for use of higher-order polynomials,

which may be necessary to prove insolvability for some power

flow equations.

Future work also includes the numerous other potential ap-

plications for mixed-integer semidefinite programming and

real algebraic geometry in the field of electric power sys-

tems. Mixed-integer semidefinite programming can be directly

applied to problems that have integer constraints (e.g., the

unit commitment problem where a power system dispatch is

optimized over time with the ability to commit and decommit

generators [43] and the optimal transmission switching prob-

lem where a generation dispatch and transmission topology

is determined to meet a given load [44]). Existing work in

this area includes the application of mixed-integer semidefinite

programming to the transmission expansion problem [45].

Infeasibility certificates may be applicable to proving insolv-

ability for other power systems problems, such as the optimal

power flow and the unit commitment problems.
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