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Abstract

We introduce a method for analyzing large-scale power sys-
tems by decomposing them into coupled lower order sub-
systems. This reduces the computational complexity of the
analysis and enables us to scale the Sum of Squares program-
ming framework for nonlinear system analysis. The method
constructs subsystem Lyapunov functions which are used to
estimate the region of attraction pertaining to the equilibrium
point of each isolated subsystem. Then a disturbance analysis
framework uses the level sets defined by these Lyapunov
functions to calculate the stability of pairwise interacting
subsystems. This analysis is then used to infer the stability of
the entire system when an external disturbance is applied. We
demonstrate the application of these techniques to the transient
stability analysis of power systems.

Introduction

Direct methods for transient stability analysis of power sys-
tems avoid the expensive time-domain integration of the post-
fault system dynamics. These methods rely on the estimation
of the stability domain of the post-fault equilibrium point. If
the initial state of the post-fault system lies inside this stability
domain, then we can assert without numerically integrating the
post-fault trajectory that the system will eventually converge
to its post-fault equilibrium point. This inference is made by
comparing the value of a carefully chosen scalar state function
(energy and Lyapunov functions) at the clearing time to a
critical value. In practice, finding analytical Lyapunov func-
tions for transient stability analysis has encountered significant
difficulties due to the lack of a systematic methodology for
constructing a Lyapunov function (see [18]–[20] for details
and a systematic survey of Lyapunov functions in power
system stability). Moreover, the energy function approach
suffers from the fact that energy functions for power systems
with transfer conductances do not exist [8], [9]. Thus, for
systems with losses, no analytical expressions are available
for the estimated stability boundary of the operating point.

In [10] we have introduced an algorithm that uses Sum of
Squares (SOS) techniques for the construction of Lyapunov
functions for classical power system models. The proposed
algorithm exploits recent system analysis methods that have
opened the path toward the algorithmic analysis of nonlinear
systems using Lyapunov methods [7], [11]–[16]. In order
to apply these methods to power grid systems described by

trigonometric nonlinearities we used an algebraic reformula-
tion technique to recast the system’s dynamics into a set of
polynomial differential algebraic equations. The algorithm was
embedded in an optimization loop that seeks to maximize the
estimate of the Region of Attraction (ROA) of the stable oper-
ating point. This algorithm provides mathematical guarantees
and avoids the major computational difficulties that are present
in the energy function method. Moreover, in [10] we have also
shown that systems with transfer conductances can be analyzed
as well, without any conceptual difficulties.

Nevertheless, there are serious difficulties before these alge-
braic methods can be applied to large power systems. The
difficulties are not conceptual but numerical because one of
the major limitations of the SOS framework is the complexity
of the system description that can currently be analyzed. It is
currently very hard to construct Lyapunov functions of systems
with state dimension bigger than 6, for cubic vector fields
and quartic Lyapunov functions. This is a serious limitation,
which renders the proposed algorithm impractical in its current
formulation, as many systems of interest are of significantly
higher dimension.

However, some of these numerical problems can be partially
overcome by using decomposition techniques that have been
proposed for the analysis of large-scale systems that are
considered to be a network of lower order subsystems —
see for example [1]–[7] and the references therein. Here we
propose another scalable computational analysis technique for
interrogating the stability properties of large-scale nonlinear
dynamical systems. We employ the same decomposition tech-
nique introduced in [7] in order to derive a collection of low-
order, weakly interacting subsystems. However, in order to
infer the global stability analysis of the full system we propose
a disturbance analysis technique that scales better than the
composite Lyapunov function approach introduced in [7].

Problem Formulation and Background

Notation

The notation used is as follows. R denote the set of real
numbers and Z+ denote the set of nonnegative integers. For
x ∈ Rn, ‖x‖ denotes the standard Euclidean norm. The L2-
norm of a signal y(·) is denoted by ‖y‖L2

. The set of n×m
matrices is represented by Rn×m. A matrix P ∈ Rn×n is
positive definite if xTPx > 0 for all x ∈ Rn, x 6= 0 and
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positive semidefinite if xTPx ≥ 0 for all x ∈ Rn, x 6= 0; we
denote these matrices by P � 0 and P � 0 respectively. A
monomial mα in n independent real variables x ∈ Rn is a
function of the form mα := xα1

1 · · ·xαn
n , where αi ∈ Z+, and

the degree of the monomial is degmα := α1 + . . . + αn.
Given c ∈ Rk and α ∈ Zk+ a polynomial is defined as
p(x) =

∑k
j=1 cjmαj

. The degree of p is defined by deg p :=
maxj(degmαj ). We will denote the set of polynomials in
n variables with real coefficients as Rn and the subset of
polynomials in n variables that have maximum degree d as
Rn,d.

Systems analysis using sum of squares methods

A multivariate polynomial p(x) ∈ Rn is a sum of squares
(SOS) if there exist some polynomial functions hi(x), i =
1 . . . r such that

p(x) =

r∑
i=1

h2i (x) . (1)

Note that p(x) being a SOS implies that p(x) ≥ 0 for all
x ∈ Rn, but the converse is not always true. The set of all
SOS polynomials in n variables will be denoted as Σn and we
define Σn,d = Σn

⋂
Rn,d. Equivalently, a polynomial p(x) ∈

Rn of degree 2d is a SOS if and only if there exists a positive
semidefinite matrix Q and a vector of monomials Zn,d(x) in
n variables of degree less than or equal to d such that [11]:

p(x) = Zn,d(x)TQZn,d(x) . (2)

For a given p finding a Q � 0 matrix is a semidefinite program
(SDP) [21] which can be solved using the freely available
MATLAB toolbox SOSTOOLS [22], [15] in conjunction with
a semidefinite programming solver such as SeDuMi [23].

The SOS technique can be used to study the stability of dy-
namical systems using a Lyapunov function approach. Indeed,
consider a dynamical system described by an autonomous set
of nonlinear equations

ẋ = f(x) , (3)

where x ∈ Rm is the state vector and f : Rm → Rm
is a locally Lipschitz function. We assume that f(0) = 0
and we are interested in the stability properties of the zero
equilibrium point. Suppose that there exists an open set D ∈
Rm containing the equilibrium point x = 0 and a polynomial
V (x) such that V (0) = 0 and

V (x)− φ1(x) ∈ Σm , ∀x ∈ D�{0} , (4a)

− V̇ (x)− φ2(x) ∈ Σm ,∀x ∈ D (4b)

where
V̇ (x) = (∂V/∂x)

T · f(x) (5)

and φi(x) = εi
∑m
j=1 x

2
j , with εi > 0, i = 1, 2, was introduced

to guarantee the positive definiteness of V and −V̇ . Then,
x = 0 is an asymptotically stable equilibrium point. In the case
in which both the vector field f and the Lyapunov function
candidate V are polynomial, the Lyapunov conditions are
essentially polynomial non-negativity conditions which can be

NP hard to test [24]. However, if we replace the nonnegativity
conditions by SOS conditions, then constructing and testing
the Lyapunov function conditions can be done efficiently using
SOSTOOLS. For examples and extensions see [12]–[16], [22].

Problem Formulation

Our goal is to develop a framework for the stability analysis of
(3) when m or deg f is too large for the direct SOS analysis
introduced in [10]. In [7] a solution to scaling SOS based
Lyapunov function construction is to decompose system (3)
into M subsystems:

ẋ1 = f1(x1) + g1(x1, u1)

y1 = x1

u1 = [yT2 , . . . , y
T
M ]T

... (6)
ẋM = fM (xM ) + gM (xM , uM )

yM = xM

uM = [yT1 , . . . , y
T
M−1]T

where gi(xi, 0) = 0 for i = 1, . . . ,M and all xi and the
elements of x have been permuted to produce a new state
vector x = [xT1 , . . . , x

T
M ]T with xi ∈ Rmi , and

∑M
i=1mi =

m. We define the set χ = {x1, . . . , xm} and construct
the subsets χi = {x1i , . . . , x

mi
i } (where xji denotes the jth

element of xi) that partition χ into M subsystems such that⋃M
i=1 χi = χ, χi

⋂
χj = ∅ for all i, j = 1, . . . ,M i 6= j.

(As discussed in [7] we can relax this restriction and admit
overlapping partitions when some of the subsystems χi are
not independently stable.) The objective of the decomposition
is to find a partition as described in (6) that allows us to
verify the stability of the overall system from subsystem
Lyapunov functions. In this context a function Vi(xi) is a
Lyapunov function for subsystem i if Vi(xi) > 0, dVi/dT =
∂Vi/∂xifi(xi) < 0,∀xi 6= 0 and Vi(0) = 0. Unlike [7],
where the subsystem Lyapunov functions Vi are used for the
construction of a composite Lyapunov function, in this paper
we propose a local gain analysis framework which analyzes
the stability of all subsystem pairs (i, j) in order to infer the
stability of system (3). The system decomposition is performed
using ideas from algebraic graph theory.

Algebraic Graph Theory and Graph Partitioning

A graph G = (V, E) consists of a set of vertices (nodes) V =
{v1, . . . , vm}, and a set of edges (links) E ∈ V×V . If vi, vj ∈
V and eij = (vi, vj) ∈ E , then there is an edge (a directed
arrow) from node vi to node vj . In this work we consider
undirected graphs, in which case if eij ∈ E then so is eji. The
graph adjacency matrix A(G) ∈ Rm×m, is given by Aij = 1
if eij ∈ E and Aij = 0 otherwise. If eij ∈ E , then nodes i and
j are called neighbors. The graph incidence matrix C(G) ∈
Rm×m, is given by Cij = 1 if edge j enters vi, −1 if edge j
leaves vi and 0 otherwise. The number of neighbours of agent
i, also called the degree of vertex vi, is denoted by ni. The
diagonal degree matrix is D(G) = diag(ni). The Laplacian



3

matrix of the graph is defined as L(G) = D(G)−A(G). For
undirected graphs, A(G) = A(G)T and L(G) � 0 . Also, L1 =
0, where 1 is the n-dimensional vector of ones. For undirected
graphs, the algebraic multiplicity of the zero eigenvalue of L
is equal to the number of connected components in the graph.
The smallest nonzero eigenvalue of the Laplacian (the Fiedler
eigenvalue) is denoted by λF (L) and its eigenvector is central
to the proposed system decomposition algorithm.

Given an undirected graph G = (V, E) the partitioning problem
requires one to construct M subgraphs, Gk(Vk, Ek), k =
1, . . . ,M such that

⋃M
k=1 Vk = V and Vk

⋂
Vl = ∅ for

all k 6= l and Ek = {(vi, vj) ∈ E|vi, vj ∈ Vk} where
the objective is to minimize the sum of the weights of the
edges connecting nodes in different partitions. Partitioning a
graph into two subgraphs (bisection) can be formulated as the
following combinatorial optimization problem:

min
z

1

4

m∑
i=1

m∑
j=1

Aij(1− zizj) =
1

2
zTLz

s.t. z2i = 1 i = 1, . . . ,m (7)

zT1 6= ±m
Here zi = 1 if node i is in one partition and zi = −1 if
node vi is in the other. The spectral partitioning algorithm [25]
approximates (7) by dropping the constraints. Each vertex is
then assigned to a partition according to the rule zi = sign(yi)
where yi is the ith element of the eigenvector corresponding to
λF (L). For fixed size partitions one can sort y into ascending
order and form a partition at the median. In order to obtain
multiple partitions the algorithm is recursively called on the
subgraphs produced by the previous decomposition.

Dynamical System Decomposition

In [7] we have introduced a system decomposition algorithm
that partition the state vector so that it minimizes the worst-
case energy flow between nodes in different subsystems.
The algorithm uses the linearization of the system dynamics
around the equilibrium point of interest in order to define a
graphical representation for the dynamical system. Thus for
the nonlinear system (3) a linearization is performed around
the origin such that

ẋ = F (x) , (8)

where x ∈ Rm is the state vector and F ∈ Rm×m is the
system Jacobian matrix computed at the equilibrium point,
i.e. F = ∂f

∂x |x=0.

A graphical representation of (8) can now be constructed using
the adjacency matrix Aij = 1 if Fij 6= 0, i 6= j and 0
otherwise. The decomposition algorithm (7) will produce a
partition of the system into two subsystems, S(χ1) and S(χ2).
This corresponds to a decomposition of (8) into[

ẋ1
ẋ2

]
=

[
F11 F12

F21 F22

] [
x1
x2

]
, (9)

with matrices Fii ∈ Rmi×mi and Fij ∈ Rmi×mj . A desirable
decomposition of (8) with F̂ Hurwitz will turn (8) into (9) such

that F11 and F22 are Hurwitz and a block diagonal Lyapunov
function of the form Vc(x) = α1x

T
1 P11x1 + α2x

T
2 P22x2 for

some αi > 0 exists for (8). Here Pii � 0 solve the Lyapunov
equations FTii Pii + PiiFii +Qi = 0, for i = 1, 2 and Qi � 0
given, while Vi(xi) = xTi Piixi is a Lyapunov function for
S(χi).

Depending on the strength of the interactions Fij , i 6= j ,
between the two subsystems and the choice of Qi, necessary
and sufficient conditions for the existence of Vc are presented
in [7]. The analysis in [7] demonstrates that decomposing a
system based only on the magnitude of the elements of the
system matrix is not a good approach, as magnitude alone does
not always provide a good indication of coupling strength. For
this reason [7] introduces an algorithm that takes into account
both the ‖Fij‖ and ‖Pii‖ components when decomposing the
system so as to minimize the worst-case energy flow between
nodes in different subgraphs. The energy flow on the edges is
calculated by releasing the system from the initial condition
that maximizes the observable energy at the output of the sys-
tem. If we define an observable y = C(G)x, defining the flow
of energy along the edges of the graph, the maximum output
energy of system (8) is given by ‖y‖2L2

= xT0 Px0 where
P � 0 solves the Lyapunov equation FTP +PF +CTC = 0,
where C = CT (G) and x0 is the unit vector aligned with
the eigenvector corresponding to the largest eigenvalue of P .
A weighted adjacency matrix W (G) ∈ Rm×m is constructed
where the energy flow from node i to node j is given by

Wij(G) = xT0X
(ij)x0 if (i, j) ∈ E , (10)

otherwise Wij(G) = 0. The dynamical system decomposition
is obtained by solving

min
z2i =1

1

4

m∑
i=1

m∑
j=1

(1− zizj)W ∗ij , (11)

where the decision vector z defines the state partition as
described in and W ∗ij = 1

2 (Wij + Wji). Optimization (11)
is exactly equivalent to a graph partitioning problem and can
be solved using the spectral algorithm described before.

Set Invariance under Bounded Disturbances

Assume that we have performed a decomposition of the system
(3) into M = 2 disjoint, but interacting subsystems

ẋ1 = f1(x1) + g1(x1, x2) (12a)
ẋ2 = f2(x2) + g2(x2, x1) , (12b)

where x1(t) ∈ Rm1 , x2(t) ∈ Rm2 , fi(xi) = 0 , g1(x1, 0) =
0, and g2(x2, 0) = 0. Let us further assume that Lyapunov
functions Vi(xi) have been already found for each isolated
subsystem described by

ẋi = fi(xi) , (13)

for i = 1, 2, and that the best estimate of the ROA for each
isolated subsystem is given by Ωi = {xi ∈ Rmi | Vi(xi) < 1}.
In order to estimate the stability of the coupled subsystems
we will address the following problem. Assume that under
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an external disturbance the coupled subsystems evolve to the
state (x01, x

0
2) when the disturbance is finally cleared and the

system’s dynamics is controlled again by (12). The transient
stability question is wether the trajectory of the system will
evolve back to its equilibrium state (x1 = 0, x2 = 0) under
the coupled dynamics (12).

To answer this question we propose to solve a different, but
related, problem: Given a bounded set Ω1

γ1 = {x1 ∈ Rm1 |
V1(x1) ≤ γ1, γ1 ≤ 1} for the first subsystem, what is the
largest bounded perturbation defined by the level set Ω2

γ2 =

{x2 ∈ Rm2 | V2(x2) ≤ γ2, γ2 ≤ 1}, so that V̇1(x1, x2) =
∂V1/∂x1(f1(x1) + g1(x1, x2)) ≤ 0 on the boundary of Ω1

γ1?

An SOS methodology has been used before [26], [27] to con-
sider the local effect of external disturbances on polynomial
systems. There, an analysis to estimate set invariance under
peak bounded disturbance was considered. In that case the
peak of x2 is bounded by ‖x2‖∞ ≤ γ2 and an algorithm
that bounds the system’s reachable set under disturbances with
peak less than γ2 is proposed. Here, we modify the analysis
to use the level sets defined by each subsystem Lyapunov
function. Indeed, we define the disturbance x2 to be bounded
by

Ω2
γ2 = {x2 ∈ Rm2 | V2(x2) ≤ γ2} , (14)

with γ2 ≤ 1 and define the invariant set as

Ω1
γ1 = {x1 ∈ Rm1 | V1(x1) ≤ γ1} , (15)

where γ1 ≤ 1. We know that if V̇1(x1, x2) ≤ 0 on the
boundary of Ω1

γ1 for all x2 meeting the bound, then the flow
of the system from any point in Ω1

γ1 can not ever leave Ω1
γ1 ,

which makes it invariant. Expressing this condition in set
containment terms, then rewriting it in set emptiness form, and
using the Positivstellensatz theorem, this condition becomes
(see [10] for more details)

s0 + s1(γ2 − V2(x2)) + s2V̇1 + s3(γ2 − V2(x2))V̇1

+ V̇ 2k
1 + q(V1 − γ1) = 0 ,

(16)

with k ∈ Z+, q ∈ Rm1+m2 and s0, s1, s2, s3 ∈ Σm1+m2 .

Choosing k = 1, we can write the following SOS constraint
that guarantees the invariance of Ω1

γ1 under bounded x2,

−s1(γ2 − V2(x2))− s2V̇1 − s3(γ2 − V2(x2))V̇1

− V̇ 2
1 − q(V1 − γ1) ∈ Σm1+m2

.
(17)

A further simplification is possible if we choose s3 = 0 and
we set q → qV̇ 2

1 and si → siV̇
2
1 for i = 1, 2, since this enables

us to factor out V̇ 2
1 and to obtain the following condition

−s1(γ2−V2(x2))− s2V̇1−1− q(V1−γ1) ∈ Σm1+m2 . (18)

Since (18) is linear in γ2 we can search for the maximum
disturbance for which the set Ω1

γ1 is invariant, by searching
over the polynomials q and the si, i = 1, 2, to maximize γ2
subject to (18).

Solving this SOS program for γ1 ∈ [0, 1] we generate a curve
γ2(γ1) which defines for each γ1 level set the largest γ2 level
set disturbance for which Ω1

γ1 remains invariant. By solving
a similar problem for the disturbances applied to the second
system, we generate a curve γ1(γ2) which defines for each
γ2 level set the largest γ1 disturbance for which Ω2

γ2 remains
invariant. Using these stability curves the stability analysis for
two connected systems takes the following simple form. If for
γ1 = V1(x01) the state x02 ∈ {x2 ∈ Rn | V2(x2) ≤ γ2(γ1)}
and if for γ2 = V2(x02) the state x01 ∈ {x1 ∈ Rn | V1(x1) ≤
γ1(γ2)}, then the composite system is stable.

Stability of Networked Systems

For a system composed of M interacting subsystems we
conjecture that checking the stability conditions for all pairs
of subsystems suffices to prove stability. Assume that at the
end of an external perturbation system (6) ends in the state
(x01, . . . , x

0
m). Does the system evolving from this state, under

the dynamics described by (6), return to its equilibrium state?
Conjecture: If for each pair of subsystems (i, j) with i 6= j,
the two coupled subsystems

ẋi = fi(xi) + gi(x
0
1, . . . , xi, . . . , xj , . . . , x

0
n) ,

and

ẋj = fj(xj) + gj(x
0
1, . . . , xi, . . . , xj , . . . , x

0
n) ,

return to their equilibrium state, then the system (6) returns
to its equilibrium state. In other words, the point (x01, . . . , x

0
n)

belongs to the ROA of the stable equilibrium located at the
origin. For each pair of subsystems the stability question is
answered by computing the stability curves discussed in the
previous section.

Results

We will consider a power system consisting of n synchronous
generators. Each generator is represented by a constant volt-
age behind a transient reactance, constant mechanical power,
and its dynamics are modeled by the swing equation. The
generator voltages are denoted by E1∠δ1, . . . , En∠δn, where
δ1, . . . , δn are the generator phase angles with respect to
the synchronously rotating frame. Furthermore, the loads are
represented as constant, passive impedances. Thus, this model
is described by the following set of nonlinear differential
equations [28]

δ̇i = ωi , (19a)

ω̇i = −λiωi +
1

Mi
(Pmi − Pei(δ)) , (19b)

where Mi is the generator inertia constant, λi = Di/Mi,
where Di is the generator damping coefficient, Pmi is me-
chanical power input, and Pei is the electrical power output,

Pei(δ) = E2
iGii +

∑
j,j 6=i

EiEj [Bij sin(δi − δj)

+Gij cos(δi − δj)] ,
(20)
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where Bij and Gij are the line admittances and conductances.

We assume that the dynamical system has a post-fault Stable
Equilibrium Point (SEP) given by (δs, ωs = 0) where δs is
the solution of the following set of nonlinear equations,

Pmi − Pei(δs) = 0, (21)

where i = 1, . . . , (n− 1). Note that we work with the relative
angles with respect to a reference node, for example, node n,
since the solution δs is invariant to a uniform translation of
the angles. Moreover, since the models analyzed in this paper
have uniform damping (λi = λ, i = 1, . . . , n), we can further
reduce the phase space by working with relative speeds. Thus,
the phase space dimension is m = 2n − 2. Finally, we make
the following change of variables δ → δ+ δs in (19) in order
to transfer the stable equilibrium point to the origin in phase
space.

The analysis tools described in this paper were employed to
perform stability analysis tests on a 7 generator 26 bus power
system model. This model was obtained from the IEEE 10
generator 39 bus by removing 3 generators. For this model
n = 7 and the dimension of the state space is m = 12.

Recasting the Power System Dynamics

SOS programming methods cannot be directly applied to study
the stability of power system models because their dynamics
contain trigonometric nonlinearities and are not polynomial.
For this reason a systematic methodology to recast their
dynamics into a polynomial form is necessary [12], [14].
The recasting introduces a number of equality constraints
restricting the states to a manifold having the original state
dimension. For the classical power system model recasting is
trivially achieved by a non-linear change of variables

z3i−2 = sin(x2i−1)

z3i−1 = 1− cos(x2i−1)

z3i = x2i ,

for i = 1, . . . , n − 1. Recall that we assume a model with
uniform damping so that x2i−1 = δi − δn and x2i = ωi −
ωn represent the relative angles and speeds of the generators.
Recasting produces a dynamical system with a larger state
dimension, z ∈ RM , where M = 3(n − 1) for a model with
uniform damping. Recasting also introduces (n− 1) equality
constraints,

Gi(z) = z23i−2 + z23i−1 − 2z3i−1 = 0 , (23)

where i = 1, . . . , n−1, which restrict the dynamics of the new
system to a nonlinear manifold of dimension m in RM . Note
that we have chosen the recasted variables in such a way that
the stable equilibrium point of the original system, xs = 0, is
mapped to zs = 0 in the recasted system space.

Dynamical System Decomposition

The spectral algorithm described before is used to produce a
decomposition of the system into 3 subsystems containing 2

Fig. 1. Successive estimates of the ROA for subsystem 1 as projected in
the angle space (ω1 = ω2 = 0). Each contour represents the estimate at
different iterations of the expanding interior algorithm [10]. The outermost
contour provides the best ROA estimate.

generators each. In order to achieve this decomposition the
the algorithm was applied recursively. We first decomposed
the system into a 2 and 4 generator partition, χ̂1 = {4, 5} and
χ̂2 = {1, 2, 3, 6}, followed by a second decomposition of the
4 generator partition into two subsystems. In the final partition
the 6 generators are distributed as χ1 = {1, 3}, χ2 = {2, 6},
and χ3 = {4, 5}. Each one of the 3 subsystems is described
by a set of 6 recasted dynamic variables and 2 equality
constraints:

S1 : z = [z1, z2, z3, z7, z8, z9]

z21 + z22 − 2z2 = 0 (24a)

z27 + z28 − 2z8 = 0

S2 : z = [z4, z5, z6, z16, z17, z18]

z24 + z25 − 2z5 = 0 (24b)

z216 + z217 − 2z17 = 0

S3 : z = [z10, z11, z12, z13, z14, z15]

z210 + z211 − 2z11 = 0 (24c)

z213 + z214 − 2z14 = 0

Subsystem Stability analysis

The SOS methodology described in [10] was applied to esti-
mate the region of attraction for the isolated subsystems. Each
subsystem is linearly stable at its zero equilibrium point. The
first estimate of the ROA was improved using the expanding
interior algorithm introduced in [10]. The evolution of the
ROA estimates as the expanding interior algorithm progresses
is shown in Figure 1. Notice the significant improvement of
the ROA estimate by comparing the innermost contour to the
outermost contour that provides the final ROA estimate.
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Fig. 2. Stability curves for the level sets Ω1
γ1

of subsystem 1 under
disturbances bounded by the level sets Ω2

γ2
. See text for details.
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Fig. 3. Stability curves for the level sets Ω2
γ2

of subsystem 2 under
disturbances bounded by the level sets Ω1

γ1
.

Pairwise Stability Analysis

We define the following perturbation for the dynamical system

χ1 : γ1 = 0.66 z10 = [-0.67 0.26 0.01 0.52 0.15 -0.01 ]

χ2 : γ2 = 0.62 z20 = [-0.64 0.24 -0.01 0.48 0.12 0.00 ]

χ3 : γ3 = 0.94 z30 = [0.62 0.21 -0.00 0.84 0.46 -0.00 ] ,

where γi = Vi(z
i
0). Using the Lyapunov functions for the

isolated subsystems we have performed a local gain analysis
for all subsystem pairs (i, j|k), i 6= j 6= k when the state
variables of subsystem k are kept constant at zk0 . The dashed
lines in Figures 2, 3, 4 represent the γj(γi) stability curves,
the dots represent γi and γj values, while the continuous line
marks the largest value of γj along this curve.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

γ
2

γ
3
(γ

2
)

Fig. 4. Stability curves for the level sets Ω2
γ2

of subsystem 2 under
disturbances bounded by the level sets Ω3

γ3
.

For this particular disturbance all stability curves are mono-
tonically increasing.1 Hence, in order to decide the stability
of each subsystem pair (i, j|k) we have to compare γj(γi)
with the largest values of γj on this curve. If γj is smaller
than this values, as it is the case in Figures 3 and 4 the
subsystems are stable. For the other subsystem pairs (i, j|k) =
{(2, 3|1), (1, 3|2), (3, 1|2)} we found monotonically increasing
stability curves with maximum γj values equal to 1. For the
pair (1, 2|3) Figure 2 shows that the largest level set Ω1

1 is
not invariant under the disturbance introduced by subsystem
2. Hence, for this disturbance we cannot guarantee that the
system does not leave the set Ω1

1×Ω2
1×Ω3

1. Of course, since
our analysis is conservative, the global system may actually be
stable and return to its equilibrium point when this disturbance
ends.

Conclusion

A method for scaling the Sum of Squares analysis framework
based on dynamical system decomposition has been described.
The method is based on representing a nonlinear system as a
weighted graph and applying a graph partitioning algorithm
to obtain the subsystems. A method for analyzing the stability
of pairwise interacting subsystems using a local gain analysis
method was also introduced. We have proposed a conjecture
that asserts that the global stability of the system can be
inferred from the pairwise stability of all its subsystems.
Nevertheless this conjecture awaits a rigorous mathematical
proof. We have shown how the methods described in this paper
can be applied to investigate the stability of a 7 generator 26
bus system which is too large to be analyzed directly using
SOS methods.

1We note that monotonicity is not a generic behavior of the stability curves.
Moreover, for a system of interacting Van der Pol oscillators we found
monotonically decreasing stability curves.
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