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Abstract

This paper addresses the assumptions underpinning many
control schemes for residential demand response (RDR), with
particular focus on those that adopt the framework of non–
cooperative games. We propose four principal assumptions
that we believe are necessary to give a realistic grounding to
research on RDR, so that they might be more readily applied
to the real problems faced by aggregators and households in
a future energy network. These are that: (i) The energy use
levels of households do not take continuous values, they take
discrete and hybrid values; (ii) In addition to the system state
variables, each household has a private state, representing the
states of the goals it addresses in consuming electricity; (iii)
Households have private preferences that are state-based, and
therefore non–convex and combinatorial, and moreover, the
monetary costs imposed by the system operator represents
only part of their preferences for electrical energy use; and
(iv) Household behaviour is strategic, both at the level of equi-
librium analysis and algorithmic design. For each assumption
we argue why it is necessary that a RDR scheme satisfy it,
and illustrate the effects of violating our proposed assumption,
with reference the existing literature on RDR schemes. We
also provide several examples of techniques that satisfy each
assumption, and illustrate our assumptions by developing a
model that satisfies all four.

Introduction

Demand response refers to methods for controlling the amount
of energy used by end users of electrical power. Demand
response schemes are employed to provide additional capacity
to the electricity network without costly new infrastructure,
and to facilitate greater penetration of renewable generation,
as increasingly flexible energy use is able to better track the
intermittent supply provided by wind and solar generation. In
particular, this paper focuses on residential demand response
(RDR). These are demand response schemes that are con-
structed specifically for large numbers of households spread
across a distribution network. Typically, these schemes are
built on a framework composed of an RDR aggregator that co-
ordinates, schedules or otherwise controls part of participating
households’ loads.

Given this context, the aim of this paper is to characterise
some necessary assumptions on the physical and economic
interaction between households and aggregators participating

in a RDR scheme. We adopt a non–cooperative game approach
to this domain [1], and present a critical survey of existing
proposed RDR schemes and frameworks, with an outline of a
set of cohesive measures for their improvement. Specifically,
we propose four principal assumptions that we believe are
necessary to give a realistic grounding to research on RDR, so
that it might be more readily applied to the real problems posed
by a future energy network, to aggregators and households
alike.

In more detail, there are four aspects of the RDR domains
where the simplifying assumptions that are often applied in
RDR schemes are not justified. The first regards the nature of
the household’s control variables. In particular, these are often
assumed to be continuous [2], [3], [4], [5], but, in reality, the
control variables within a household are typically discrete or
hybrid. Continuity allows powerful analysis and continuous
optimisation methods to be applied to the problems, which
is a useful approach to the analysis of stylised models of
aggregate household behaviour. However, these techniques
will be rendered useless in actual future grid deployments if
the variable domains to which they are applied do not conform
with their requirements.

Second, household state variables are typically overlooked or
ignored in RDR schemes. For example, it is often assumed
that the only relevant state variables are system state variables
(i.e. power generation cost parameters, wind power generation
levels and forecasts, etc; e.q. [4], [6], [7]). This is tantamount
to implicitly assuming that households are static, and do not
adjust their levels of demand for electricity in response to
previous and future scheduled allocations.

Third, typical assumptions about household preferences sim-
plify the models to a point where they actually obscure the
real problems in RDR. For example, preferences for power
use are commonly left to be completely represented by the the
monetary costs imposed by the power system operator (albeit,
often with hard constraints around what times electricity can
be used [2], [3], [8], [5]). Moreover, in the cases where
household utility models are used, these are often taken from
either industrial load preference models or from aggregate
models (as in [9]), which in both cases are typically concave
[7], [10]. However, in either case, the household models
used miss the considerable diversity in usage patterns and
the combinatorial structure to their demand, because they are
either obscured by aggregation or simply not present in most
industrial loads.
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Fourth, the nature of households’ behaviour is often assumed
to be non–strategic, or cooperative. This is particularly the
case with respect to the algorithms proposed to RDR schemes;
although non-cooperative game methods are employed to
analyse the equilibria of the proposed RDR models, game-
theoretic reasoning is not extended to the design of algorithms
[2], [3], [4], [5], [8]. Thus, issues of incentive compatibility
and truthful implementation are ignored [11].

The types of assumptions above disconnect the proposed
methods from reality and make it difficult to see how they
can be directly applied to real-world RDR domains.

Contribution of the Paper

Against this background, we argue for a non–cooperative
game–theoretic approach to RDR that is built on firm prin-
ciples and valid assumptions about the RDR domain. To be
perfectly clear, we are not arguing against a game–theoretic
approach. Rather, our contention is that such an approach is
necessary, but that the abstractions listed above do not advance
our understanding of RDR scenarios, and need to be replaced
with assumptions that better reflect reality. Thus, the main
contribution of the paper is to construct assumptions for the
four aspects of the RDR domain listed above that are realistic
and appropriate. Our proposed list of necessary assumptions
are that:

Household energy use values — The electrical energy use
levels of households is an aggregation of continuous, discrete
and hybrid variable types, so are not necessarily drawn from
a continuous set of values;

Household state variables — A household has a private state
that collectively represents the states of the goals it pursues
or tasks it wishes to complete, thereby consuming electrical
energy;

Household preferences — Households have private pref-
erences that are state-based, and therefore non–convex and
combinatorial; moreover, the monetary costs imposed by the
system operator represents only part of their preferences for
electricity use; and

Household behaviour — Household behaviour is strategic,
both at the level of equilibrium analysis and algorithmic
implementation.

In this paper, for each of these four assumptions, we provide
a justification for the proposed assumption, show why the
existing assumptions are not justified and need replacing, and
discuss ways to analyse models and compute solutions in
scenarios that use these new assumptions. We believe this will
better enable the transfer of smart grid research to real smart
grid deployments than those assumptions that are currently
regularly invoked. Note that the assumptions here are defined
loosely, and as such, numerous different representations or

formulations could accommodate them; we are not prescribing
or proscribing any particular approach at a detailed level.

A final point to note: our analysis is based on an assumption
that the interaction between households and an aggregator is
non–cooperative. An alternate point of view is to model the
interaction with a cooperative or coalitional game, in which
a household forms a binding agreement with the aggregator
to undertake some RDR activities [12]. It is our contention
that these types of games are best suited to direct load
control of the households appliances (e.g. through broadcast
signals), rather than the types of schemes listed above where
households are always given the discretion to choose their level
of participation in the demand response activity.

Outline of the Paper

The paper progresses with a Preliminaries section that in-
troduces notation and some important concepts. Then, each
of the four assumptions above are discussed in each succes-
sive section: Household Energy Use Values; Household State
Variables; Household Preferences; and Household Behaviour.
Each section includes some examples of models and methods
that satisfy the assumption, an examination of the effects of
violating the proposed assumption, and the consequences of
the assumption for some recently proposed RDR schemes.
In addition, as we progressive, we develop an example of a
model that admits our assumptions, which we use to illustrate
our arguments. We also use this model to demonstrate how
ignoring our assumptions can be detrimental to alternative
RDR schemes; by giving examples of proposed RDR schemes
that ignore one or more of the four features listed above.
We conclude the paper with a brief discussion of directions
for future work and some broader issues for game-theoretic
methods in RDR. Since the model we develop is spread across
several sections, a table of notation is included at the end of
the paper for reference.

Preliminaries

Throughout, the set of (positive) real numbers is denoted
(R+) R, and the probability of an event is denoted P(·). We
adopt a discrete-time model, where operations are divided into
H = {0, . . . ,h, . . . ,H−1} time slots over the decision horizon.
Consequently, all electrical quantities are stated as blocks of
energy; for example a 100W appliance running for 30 minutes
is described by a 0.050kWh demand block.

We consider the interaction of one residential load aggregator
(e.g. a retailer) with its associated residential loads. The
interaction of the aggregator and households with the broader
energy system and market are illustrated in Fig. 1.

Generation and Distribution

Regarding the transmission and distribution of electrical en-
ergy, there are considerable network effects to consider in
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Fig. 1. Model of interaction between an RDR aggregator and households (the
focus of this paper, bound by dashed lines), and the broader energy market.

future demand-response scenarios. However, as indicated by
Fig. 1, we focus solely on demand-side modelling, so adopt a
copper-plate network model.

We assume that the aggregator purchases energy in a whole-
sale electricity market comprising energy suppliers and other
bulk purchasers (including some large end users), and also
assume that the wholesale market that the aggregator buys
from operates efficiently. Alternatively, we could make the
same assumptions in the context of a microgrid with few
generators, while still retaining our focus on the interaction
of the residential aggregator and its residential loads.

Let J denote the set of electricity suppliers. Each energy
provider j ∈ J supplies s j

h units of energy in a slot h.
Associated with each provider is a generation cost function
c j : R+ →R+. We assume that, for all j ∈ J , the cost functions
c j(·) are twice differentiable in (0,∞), strictly increasing and
convex. For example, a typical conventional generator can
be approximated by a quadratic cost function. Under the
efficient market and cost function assumptions above, the
price schedule faced by an aggregator buying energy in the
wholesale market is also strictly increasing and convex.

Aggregator and Household Models

Our model of the interaction between an RDR aggregator and
households, as described in Fig. 2. In this model, control over a
household’s load, via its appliances, remains completely under
the control of the household, possibly intermediated by an
Home Electrical Control Unit (ECU). In this model, energy
flows can be seen by the aggregator using “smart meter” in-
frastructure. A two-way communications infrastructure allows
for other information flows between the households and the
aggregator, which will be used to facilitate and coordinate
scheduling and pricing schemes in advance of the actual time
that electrical energy is used. However, it should be noted that
the information passed on these channels regarding predicted
future energy flows is only verifiable at the time that the
electricity is actually used.

Let I denote the set of households supplied by the aggregator.
A household i ∈ I uses di

h ∈ R+ units of electrical energy
in slot h. Then, the total electrical energy supplied by the

Retailer/

RDR aggregator

Observed energy flows

Other information flows

Fig. 2. Detailed model of interaction between an RDR aggregator and
households: control of appliances remains completely under the control of the
household, via the Home ECU; energy flows are observable to the aggregator,
via the metering infrastructure (solid lines); other information flow are also
facilitated, via a communications infrastructure (dashed lines).

aggregator in slot h is given by: xh = ∑i∈I di
h. Household

electricity use is associated with utility benefit or reward, ri
h ∈

R+. This value can be thought of as indicating the household’s
“willingness to pay,” or the user’s fictitious monetary value
derived from, consuming a certain amount of electrical energy.
It is typically given a functional form, which is possibly also
dependent on factors such as the particular time slot in which
the electricity is used, or the timing of other energy use.
However, since the composition of this function is a topic
of contention in this paper, we leave a precise specification of
a reward function ri

h(·) to later sections.

Given a total amount of electrical energy supplied to all
households by an aggregator, xh, denote the corresponding
price schedule that the aggregator faces by Ch(xh) (i.e. ignoring
other market participants). The aim of an RDR scheme is
to derive the method by which an aggregator structures its
interaction with households. That is, an RDR scheme defines
how the aggregator divides the costs it faces among its
end users, and induces them to use electricity at the most
appropriate times. Let di = [di

0, . . . ,d
i
H−1] be the vector of

household i’s electrical energy use over the horizon, and
d = {di}i∈I be the collection of vectors of all households
electrical energy use over the horizon. In general, we can
define the cost division used by the aggregator as a vector
function, φ(Ch(xh),d), which returns a vector of costs, one for
each end-user household (the aggregator calculates xh from d).

Each household has instantaneous utility function ui
h(d, ·),

which takes a quasi–linear form that combines their rewards
and costs for consuming electricity. Moreover, this can be
summed over the the decision horizon, giving a function for
total utility:

U i(d, ·) =
H−1

∑
h=0

ui
h(d, ·) =

H−1

∑
h=0

ri
h(·)−φi(Ch(xh),d) (1)

where φi(Ch(xh),d) is the ith component of the aggregator’s
cost division function. As in the value function, (·) represent
a yet-to-be defined additional factors, the discussion of which
make up part of the contribution of the paper.

The aggregator and households’ actions are coupled through
the dependence of their utilities on the vector of total loads
x. Thus, their interaction results in a game. The solution
concept typically applied to non–cooperative games is the
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Nash equilibrium solution. Let us write d = {di,d−i}, where
d−i denotes the loads of all households apart from i.

Definition 1: A joint electricity use profile, d̄, is a pure
strategy Nash equilibrium if it satisfies:

U i(d̄i, d̄−i, ·)−U i(di, d̄−i, ·)≥ 0 ∀ i ∈ N.

That is, in a (pure strategy) Nash equilibrium, every house-
holds electricity use profile is a best response to the other
households’ usage profiles. In the remainder of the paper,
when we use the term Nash equilibrium we are referring
to a pure strategy Nash equilibrium. In order to retain our
focus on demand–side modelling, we do not consider other
solution concepts, such as mixed strategy Nash equilibrium or
correlated equilibrium.

Each of the next four sections covers a specific proposed
assumption. Each section has the following structure. First,
the new assumption is described and justified. Then the
implication of the proposed assumption on existing models
and methods is explained, that is, we show how each as-
sumption invalidates some proposed methods of analysis and
computational procedures used to solve existing models. We
then discuss how the difficulties of implementing the new
household model assumptions can be overcome, and indicate
some specific methods and representations that admit the new
assumption. Finally, as we move through the four assumptions,
we progressively develop an example of a model that satisfies
all of them, illustrating their feasibility.

Household Energy Use Values

The first assumption we propose relates to the nature of control
variables available to households. We start by noting the reality
that households use power by operating appliances. Moreover,
that household appliances have discrete, continuous and hybrid
levels of power usage. For example, appliances with discrete
power levels include an electric stove with discrete operating
points, while others have fixed profile or patterns of power
use, such as a refrigerator’s compressor cycle, or a washing
machine with a certain number of programs. Moreover, even
in our discrete-time model, this means that in a fixed block of
time only discrete amounts of electrical energy can be used.

Assumption 1: The electrical energy use levels of households
is an aggregation of continuous, discrete and hybrid variable
types, so are not necessarily drawn from a continuous set of
values.

That is, we propose that it is necessary to assume that a
household’s choice of power level at different times, or energy
requirements over a particular interval, is an aggregation of
continuous, discrete and hybrid variable types, which may not
allow for continuous choice of energy (or power) use. Our
assumption stands in contrast to the common approach of
treating the household decision on energy use as a continu-
ous variable. When considering large industrial power users,

assuming continuity is justifiable, due to the large nature of
the loads in question. However, it is unreasonable in RDR,
as most appliance loads cannot be arbitrarily split, due to the
nature of the appliances’ operation.

In order to make Assumption 1 concrete, we need to formalise
some concepts. Let:

• M i be the set of household i’s appliances;
• Ai = ×

m∈M i
Ai,m

h be the set of actions that a household can

undertake using its set of appliances, where Ai,m is the set
of action that can be undertaken by appliance m ∈ M i; and

• di,m
h denote the load of appliance m ∈ M i in slot h.

Now, having adopted a discrete-time modelling framework,
we define loads as blocks of energy used in a time-slot. We
make the not unrealistic assumption that appliances actions
are completed within one time-slot (and this usually would
be satisfied in the case that each slot is one hour long).1 If
appliance m can complete an action by operating at one of a set
of discrete power levels, then the amount of energy it can use
in a slot is one of a finite set of values; that is: di,m ∈{a,b, . . .},
where a,b, . . . ∈ R+. If the appliance can complete a task by
operating at a continuously variable level of power, then the
amount of energy it uses over a slot also varies continuously;
that is: di,m ∈ [a,b], with a,b ∈R+. Hybrid or mixed levels of
power produce a level of electrical energy use over a slot that
is between these two cases.

Household demand is necessarily an aggregation of these
loads, and is given by:

di
h = ∑

m∈M i

di,m
h .

Importantly, it does not follow that di
h can be represented

by a continuously variable block of energy, because of the
constraint that for some appliances, di,m

h is drawn from a set
of discrete values.2

We now discuss the effects of moving away from assuming
continuous energy use variables on the analysis of RDR
models and computation in RDR schemes.

Consequences for Analysis

When all decision variables are continuous, the analysis of
a RDR scheme is often simple. For example, some early
models of RDR adopted a convex game framework [2]. Since
convex games have a unique Nash equilibrium [13], analysis
of the solution is straightforward: it is equivalent to finding the

1For shorter slot lengths or more slots over the decision horizon, we would
need to introduce additional variables to capture the couplings between energy
used over the duration of an appliance’s operation, which would distract from
the main points of the paper.

2We note that households have flexibility in the timing of their energy use,
and that they can use this flexibility to make the value of their energy use in a
particular time slot continuous. However, taking these types of actions induces
additional combinatorial structure to a household’s energy use preferences.
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minimum of a convex function on a convex feasible solution
space.

More recently, several authors have adopted a potential game
(or congestion game) framework for analysing energy use
scheduling and load balancing schemes [4], [3]. In the case of
infinite potential games with continuous actions, these models
are easily analysed: By construction these games have a Nash
equilibrium, since all potential games are guaranteed to have
pure strategy Nash equilibria (see [14] for static games and
[15], [16] for dynamic games). In contrast, in [5], I is taken
to be an infinitely-large set of households. Thus, the effect
of each household is infinitesimally small, and the aggregate
joint action can be treated as continuous, to the same effect.
Moreover, under certain convexity restrictions on the potential
function, uniqueness of a Nash equilibrium can be guaranteed
in games with continuous actions (e.g. [17]), however, these
conditions are not always satisfied by RDR schemes.

In addition, simple tools from calculus can be used to bound
the efficiency of these equilibria in potential games. This
involves deriving a lower bound on the ratio of the worst–
case Nash equilibrium to the “social optimum” of the game,
which may or may not be an equilibrium itself.3

However, if the levels of demand are broken up in different
ways, such that the games no longer have continuous or
convex action spaces, then these methods of analysis cannot
be applied. For example, even if every household’s levels
of electricity use can be expressed as a multiple of some
arbitrarily small value η > 0 (so-called integer-unit congestion
games), guarantees on the existence of pure strategy Nash
equilibria can only be made with the addition of convexity
conditions on the households utility functions (see [18], [19]).

Consequences for Computation

When all decision variables are continuous, not only is the
analysis of a RDR scheme usually simplified, but so is the
computation of a solution, because standard continuous (typi-
cally convex) optimisation methods can be used for solving the
problems at hand. However, once variables that take discrete
values are included, computation is made more difficult.

For example, convex games and infinite potential games can
be solved using straightforward search techniques, such as
gradient descent or binary search. In the case of convex games,
these methods will find the unique equilibrium, and further-
more, they are usually easy to distribute across the households.
For potential games, because of the possibility of multiple
Nash equilibria, some researchers have proposed centralised
solvers that select a specific, optimal Nash equilibrium [4].
Beyond this, other models that are neither convex or potential
game–based also rely on continuous action spaces, for their
proposed algorithms to operate [6]. However, in all of these

3For an overview of methods for analysing the efficiency of equilibria, see
Section III of [11].

cases, moving to discrete variables adds more complications
depending on the precise nature of the variables’ domains.
For example, solving integer–unit congestion games involves
a carefully designed search–based procedure that avoids falling
into cycles [19]), which only exist as an effect of the discrete
action space.

Household State Variables

Building on the previous assumption, the nature of household
demand for appliance use is that it is goal– or task–based. That
is, energy is an intermediate good: households do not gain util-
ity for consuming electricity itself, rather by completing tasks
using electrical energy. This lends itself to a representation of
the state of a household in terms of the states of the goals
associated with each appliance. These states could comprise
tasks completed by particular appliances, such as clothes or
dish washing, or goals for appliance states, such as heating
the water in a hot water water systems to a sufficient level or
ensuring that a refrigerator stays within a certain temperature
range, and so on. We call the states of these goals, collectively,
the household state.

Assumption 2: A household has a private state that collec-
tively represents the states of the goals it pursues or tasks it
wishes to complete, thereby consuming electrical energy.

We can formalise this assumption by requiring that RDR
model includes a vector, si, of household state variables:

si ∈ Si = ×
m∈Mi

Si,m ×Si,0,

where the space of values si can take comprises:

• the set of states of each appliance, Si,m, and
• an appliance–independent household state, Si,0.

For each appliance, the set Si,m, is comprised of a set of
states associated with the tasks or goals that the household
wishes to complete or achieve using that appliance, as well as
any intermediate or precursor states to these. In addition, the
appliance–independent household state, Si,0, could include the
relevant household characteristics that are not affected by any
appliance’s actions, such as occupancy, outdoor temperature,
and so on. This is very similar to the automatic systems
used by thermostatically–controlled loads, such a refrigerators
and stored electric hot water systems, which operate using
dead–band controllers (e.g. “heating”, “maximum tempera-
ture”,“cooling” and “minimum temperature”).

An example of a state-action diagram for a dishwasher is given
in Fig. 3. In this, the dishwasher has states and actions listed
in Table I. Although this diagram, and subsequent ones, may
contain more detail than is required for all RDR schemes,
they do demonstrate one way that household states could be
represented.
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Fig. 3. A state-action diagram for an appliance.

State/Action Description
s1 Not ready to start (items washed/empty)
s2 Ready to start (sufficiently full of dirty items)
s3 Dishwasher running
a1 No dirty items collected
a2 Collected dirty items
a3 Start dishwasher
a4 Wait to complete

TABLE I
EXAMPLE STATES AND ACTIONS FOR A DISHWASHER, CORRESPONDING

THE STATE-ACTION DIAGRAM IN FIG. 3.

Single appliance models often adopt a state-based formulation
implicitly. For example, models of households charging plug-
in electric vehicles rely on the state of the vehicles battery and
whether it is at a charging station (e.g. [20], [5]). For more
complicated domains involving several tasks, task-based repre-
sentations have not been widely employed; finding appropriate
representations is a key area of focus for future work.

Sometimes the goal is to simply model household behaviour,
in order to make better predictions of future loads. For this
setting, some avenues investigated so far include factored
models for appliance usage modelling using hierarchical time-
series models [21], and identification and clustering of load
types using Dirichlet distributions [22].

Appliance State Transition Functions

On the face of it, it appears that Assumption 2 has few direct
consequences other than the requirement that household state
is considered in RDR schemes. However, it is an important
precursor to the third assumption on household preferences.

Specifically, admitting Assumption 2 leads us to define a state
transition function for each appliance. The transition function
for appliance m is given by:

T i,m : ×
l∈m

Si,l ×Si,0 ×Ai,m → Si,m. (2)

where m is the set of appliances with states that are coupled
with that of appliance m, e.g. through tasks that require the use
of more than one appliance (for many tasks and appliances,
m will contain only appliance m itself). This function defines
the transition between appliance states as a result of taking
an action ai,m ∈ Ai,m to complete a task while in joint state
si,m ∈ ×l∈mSi,m ×Si,0.

It is also worth noting that the set of permissible appliance
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Fig. 4. A coupled state-action diagram for the joint task of “wash and dry
clothes.”

actions can, and likely does, vary with the appliances state.
This can be seen in Fig. 3, where only actions a1 and a2 are
possible in state s1, and likewise in the other states.

The transition function above gives a model of the flow of
tasks and states in a household. The next assumption adds
“rewards” or “preferences” to actions and state transitions.
However, before this, we illustrate Assumptions 1 and 2 with
a concrete example.

Running Example: Illustrating Assumptions 1 and 2

It is clear that including household state variables can signifi-
cantly complicate an RDR model. However, as much as they
complicate the model, the task-based couplings of household
state variables often present an opportunity to prune the space
of policies, as we demonstrate in the example developed
in this section. Specifically, we consider an example of a
power scheduling problem on a micro-grid, similar to the
model developed in [2] and [7]. We will continue to use this
as a running example through the paper as we add further
assumptions to our RDR model.

Our example problem comprises a conventional gas generator
and residential electricity users on a copper-plate microgrid,
collectively selecting a discrete-time usage and generation
policy. In our (minimal) example, the day is divided into three
time-slots, low, shoulder and high, denoted: h ∈ {lo,sh,hi}.

We consider two households, A and B. Both have three tasks
to complete each day: dish washing (DW ), clothes washing
(CW ) and clothes drying (CD), which are undertaken by their
respective appliance type. Thus, associated with each of the
appliances has a set of states, such as three states for the
dishwasher in Fig. 3. However, the clothes washer and dryer
appliances are coupled, because for the joint task wash and
dry clothes, CD necessarily occurs sometime after CW . This
is illustrated in Fig. 4, where the thick line from CW s3 to
the origin of CD a2 indicate the requirement that the clothes
washer needs to have completed washing before the clothes
dryer can begin.
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We assume that both DW and CW use a relatively low
(L) amount of energy, and that CD has a high (H) energy
requirement, thereby satisfying Assumption 1. For demonstra-
tion purposes, we set these levels to di,CD = H = 4kWh and
di,DW = di,CW = L= 1kWh. Given the loads for each appliance
above, the full set of possible load schedules is given below,
where each entry represents (di

lo,d
i
sh,d

i
hi):

(H +2L,0,0) (0,H +2L,0) (0,0,H +2L)
(H +L,L,0) (L,H +L,0) (L,0,H +L)
(H +L,0,L) (0,H +L,L) (0,L,H +L)
(2L,H,0) (H,2L,0) (H,0,2L)
(2L,0,H) (0,2L,H) (0,H,2L)
(H,L,L) (L,H,L) (L,L,H)

However, this does not take into account the task-based nature
of the energy demand, as per Assumption 2. Specifically, CD
is only permitted after CW is completed, implying that the H
load must be preceded by a L load. Recognising this reduces
the set of feasible schedules from 18 to the following eight:

(2L,H,0) (2L,0,H)
(L,H +L,0) (L,0,H +L)
(L,H,L) (L,L,H)

(0,L,H +L) (0,2L,H)

We have now constructed a basic model of the flow of tasks
and states in a household and illustrated it with a concrete
example. In the next section, we associate rewards to the
actions and state transitions; that is, we introduce the notion
of households’ preferences for power use.

Household Preferences

In the Preliminaries section of this paper, we defined a
household’s utility benefit or reward as its “willingness to pay”
for consuming a certain amount of electrical energy. In order
to correctly model household preferences, we now extend this
reward idea to our task- and state-based model of household
activity.

Under assumptions 1 and 2, we argue that household control
variables are of mixed type and residential electricity use is
intrinsically task–related. As a consequence, a household’s
preferences for consuming electrical energy has multiple, task–
related attributes that are coupled, giving it an inherently
combinatorial and non–convex character.

Assumption 3: Households have private preferences that are
state-based, and therefore non–convex and combinatorial;
moreover, the monetary costs imposed by the system operator
represents only part of their preferences for electricity use.

Specifically, this assumption should be interpreted as allowing
for changes in appliances’ states over time as a result of
completing tasks, and allowing for couplings between the
rewards for some appliances’ uses. Combinatorial structure

over time can be induced by substitution effects, such as
tasks that are completed only once per day (e.g. running
the dishwasher) and deadlines for task completion, among
other things. Task-based couplings include complementarities
such as preferred precedence orders on related tasks (e.g. a
preference to run the clothes dryer immediately after running
the clothes washer).

This assumption can be formalised by defining a reward
function, given by:

ri
h : Si ×S0 ×Ai → R+ (3)

such that ri
h(s

i
h,s

0
h,a

i
h) is the instantaneous reward for taking

action ai
h in joint local and global state {si

h,s
0
h}. Note that

this formulation implies that the immediate rewards satisfy
the Markov property, in that they are only dependent on the
current state and the action taken. This reward function is
then combined with the (aggregator supplied) cost division
function, φi(Ch(xh),di) where each element of di is given by
the load di

h in time-slot h. resulting in an instantaneous utility
function of:

ui
h(d

i,xh) = ri
h(s

i
h,s

0
h,a

i
h)−φi(Ch(xh),di). (4)

There are a number of things to note about this formulation.
First, (4) shows that coupling within a household, across
the set of appliances, appears in both the reward and cost
functions, while coupling across households arise through the
cost function only. Second, it is expected that the cost schedule
that the aggregator passes to the households is anonymous, in
that only aggregate load values are reported, not other users’
load information; thus, privacy is (at least partially) assured.
Third, the cost division function here is left unspecified, as it
comprises one of the main components of the RDR scheme
design problem, but it is assumed to be dependent on the entire
forecast of loads di over the decision horizon H , not only
the current usage level di

h.

The existence of combinatorial structures in the household’s
utility function implies that a household’s preferences cannot
be truly represented by the simplistic, static or single dimen-
sion preference models that are commonly employed in pro-
posed RDR schemes. However, while there is no one particular
combinatorial preference representation that is clearly a best
fit for household preferences, some relevant examples of what
may be suitable include goal-base languages, CP-nets and
dynamic preferences including graphical models of dynamic
preferences (see [23] for a survey of preference representa-
tions). One particularly appealing line of investigation is to
extend the state-based load predictors in [21], [22], discussed
earlier, so that they can be used as models of households
preference.

Consequences for Existing Preference Models

Many household preference models currently used miss the
richness of energy demand patterns, and there are several
common simplifications.
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Many models reduce a household’s energy demand profile
to a monotone concave function, often with of a form with
single parameter, and/or assume that the utility for consuming
power at a particular time is independent of energy use at
other times [3], [7], [10]. There are two explanations for why
researchers use this approach. First, standard microeconomics
uses the “representative agent” method of analysis, which
often invokes monotone concavity in utility. These types of
utility representations function implies that households have
an always increasing but marginally decreasing utility for
consuming more energy, irrespective of the state of the house-
hold’s task states. Microeconomic consumption also typically
operates at a different time-scale to electricity use: electrical
power is unique in that it cannot be (easily) stored (without
significant losses), which is different from almost every other
commodity, which can be stored and used over time. As such,
state-based preferences are not often considered (other than
in capital accumulation and investment problems). Second,
early efforts to derive demand response schemes focused
on large-scale and industrial energy users, as in [9]. For
these types of users, monotone concave functions with inter-
temporal independence may be a good approximation of their
utility, as industrial loads are significantly different in their
characteristics to household loads. However as argued above,
the same models cannot be extended to household loads,
because when considerations of the combinatorial character of
a household’s preference are included, this style of preference
modelling is inadequate.

Another common, but unjustified, simplification is that some
models rely entirely on energy costs to model household pref-
erences, and do not consider household benefit or willingness-
to-pay at all (e.g. [2], [4], [24], [5]). This can be interpreted
alternatively as assuming that households have hard require-
ments on their energy use, such that they have no discretion in
the total energy used, only over the timing of the use. In other
words, to take this approach is to implicitly apply the same
reward to completing every task; that is, the models treat the
completion of certain tasks as hard constraints on an energy
allocation.4 Under either interpretation, the only optimisation
that is present is to minimise collective energy costs. This
approach may well have its origins in the communications
literature (it is also seen in the operations literature on shared
processor load balancing), where delay or latency is typically
the measure that both the systems operator and the users are
trying to minimise, and a user’s preference for its packets to
reach their destination are assumed to be given by a hard
quality of service requirement. However, scheduling several
tasks, using only opening and deadline times, is not truly rep-
resentative of the nature of demand for energy for completing
coupled combinations of tasks, such as washing and drying
clothes. Similarly, nor can tasks that have a discretionary
component be captured by this type of preference model, such

4It should be noted that the open–loop coordinated plug-in electric vehicle
charging scheme of [5] is open to users interrupting their charging when
the cost is too high, i.e. above their reward, However, their model analysis
does not take this type of disruption into account, nor does their price setting
mechanism.

Label di rA rB

d1 (2L,H,0) 90 90
d2 (2L,0,H) 85 85
d3 (L,H +L,0) 100 100
d4 (L,0,H +L) 100 100
d5 (L,H,L) 95 100
d6 (L,L,H) 100 95
d7 (0,L,H +L) 105 110
d8 (0,2L,H) 110 100

TABLE II
TOTAL REWARDS OVER THE THREE TIME-SLOT HORIZON FOR EIGHT

DIFFERENT LOAD SCHEDULES.

as being flexible to adjusting the temperature in a house in
response to variations in energy costs.

In several of the cases above, the major consequence of making
these unwarranted assumptions is to open the predictions and
proposed actions of an RDR scheme amalgamation errors,
such as Simpson’s paradox (the Yule–Simpson effect). These
errors can adversely affect the incentives of a cost-division
scheme, and thereby reduce the overall effectiveness of the
RDR scheme.

The answer to these shortcomings is to adopt an appropriate
combinatorial preference representation. However, one draw-
back of using combinatorial representations is that they suffer
from exponential growth in the size as additional attributes
or tasks are included. However, it is possible to choose an
adequately rich but analytically and computationally feasible
representation that does not lead to an exponentially large rep-
resentation or intractable optimisation problem (see, e.g., [23]).

Running Example: Including State-based Preferences

We now develop our running example to include the two
household agents’ utilities for completing tasks. This begins
with each agent’s reward for completing tasks, and continues
with an example of the costs of generation and an associ-
ated cost-division scheme employed by an aggregator, and is
completed by integrating the two components in a quasi-linear
utility model.

As argued above, electrical energy is used to complete house-
hold tasks, and the reward of consuming electrical power is
the value placed on completing these tasks. Table II gives
A and B’s total reward over the three time-slot horizon,
for completing tasks in the different slots. The tasks are
completed as indicated by their discretionary power usage
di = [di

lo,d
i
sh,d

i
hi]. We use the labels as indicated above to

denote the difference load schedules in the remainder of this
example. These rewards express the preferences households
have for completing tasks during different times during the
day.

Combining the cost and value functions for the agents in a
micro-grid produces a electricity usage scheduling game.
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dB

dA d6 d7 d8
d6 27, 22 43, 53 25, 35
d7 48, 38 12.5, 17.5 20.5, 25.5
d8 35, 20 25.5,25.5 31.5,31.5

TABLE III
UTILITIES FOR THE REDUCED SCHEDULING GAME.

Assume that there is an amount of non–discretionary aggregate
energy use (from lights, refrigerator, and other uninterruptable
or shiftable loads) in each slot of d̃ = (1,2,3), which is in
addition to the amounts given by the table above. Now, let the
aggregate generator cost per time slot, ch(xh), be a typical
quadratic function of total demand in each slot, given by:
ch(xh) = axh+bx2

h+c. Let where x is the vector of total power
levels for one slot, which includes the non-discretionary loads,
i.e.: xh =∑i∈I di

h+ d̃h. Then, total generation costs per day are:

C(x) = clo(xlo)+ csh(xsh)+ chi(xhi). (5)

For this example, set the cost parameters to a = 0, b = 1 and
c = 0, so that c(x) = x2. The total generation costs for the
possible combinations of demand levels for our two-player
example are given in Appendix A.

Using the quasi-linear utility function to combine these costs
with the rewards from earlier gives the utilities for the two
households over the three-step decision horizon, which can
be found in Appendix A. Also there, we show that since
the households have schedules that are dominated, we can
apply the standard method of iterated elimination of dominated
strategies to reduce the number of joint schedules requiring
analysis. This eliminates all actions other than d6, d7 and
d8 for both A and B, and the resulting rational strategic
opportunities for the households is succinctly represented by
the bi-matrix in Table III.

If this payoff matrix was known to the aggregator and/or to
the other households participating in the RDR scheme — that
is, if it was a game of complete information — then it would
be a potential game. It would have three pure-strategy Nash
equilibria, at (xA,xB) = (d7,d6), (d6,d7) and (d8,d8). Note
that the equilibrium at (d6,d7) optimises the system’s social
welfare; that is, argmax[∑i∈N U i(di,x)] = (d6,d7).

However, since the households’ rewards for electricity usage
are not known to either the aggregator or the other households,
that is, they are private information, the game is one of
incomplete information. Therefore the RDR scenario is not
adequately represented by the type of game above, as the Nash
equilibrium analysis is not able to give a complete picture
of the households’ behaviour. For example, one approach to
remedy the incompleteness of game information is for the
aggregator to ask the households to reveal their rewards, and
then instruct the households to play the socially optimal Nash
equilibrium. We build on this idea in the next section, where
we argue that households are strategic, and by employing
such a method in the presence of incomplete information, the

aggregator provides an incentive for households to benefit by
mis-reporting their rewards.

Household Behaviour

In order to achieve their aims and reach their goal, households
will be strategic; it is in their self-interest to be so. Assuming
that they will not try to game the system in place is not a rea-
sonable approximation of reality and clashes with motivation
for using a non–cooperative game framework.

Assumption 4: Household behaviour is strategic, both at the
level of equilibrium analysis and algorithmic implementation.

This is by far the most intricate of the four assumptions: By
assuming that households will act rationally and strategically
to pursue their own self-interest, the problem of RDR aggre-
gation falls squarely in the realm of algorithmic game theory,
and in particular, algorithmic mechanism design. The general
aim of mechanism design is to derive or construct an allocation
rule and a cost division (or payment) scheme that, together,
allocate a good to those participants that value it the most
— the efficient allocations. A mechanism is typically proven
to be efficient by showing that, under the allocation rule and
payment scheme, making a truthful preference report is the
best action for every agent.

However, the task of deriving allocation and pricing rules that
implement an electrical energy allocation over time that is
(approximately) truthful and efficient is difficult. Indeed, the
“approximately” here is an acknowledgement of the fact that
the application of mechanism design principles is complicated
by several additional constraints that are inherent to RDR
aggregation, which are partially covered by our preceding
assumptions. These are:

1) Electrical power usage is often at discrete levels (Assump-
tion 1), which has consequences for choice of allocation rules
that can be applied, as different rules will have different
equilibria and aggregator revenue, and only certain methods
of computation can be applied when usage levels take dis-
crete or hybrid values (cf. the discussion of integer-splittable
congestion games earlier).

2) Preferences over power usage profiles are combinatorial,
and vary over time as a function of the tasks being undertaken
in a household (Assumptions 2 and 3). Furthermore, the state
of a household may not be directly observable to a mecha-
nism, which may prevent the application of some approaches.
For example, online and dynamic VCG mechanisms require
accurate models of participants behaviour, but these may not
be available if household states cannot be accurately observed
by the aggregator [25], [26].

3) It is not clear how to express values over alternate power
usage profiles (Assumption 3). A fully expressive represen-
tation of a households preferences over all possible power
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allocations would be impractically large (implying infeasibly
large communication times and computation requirements);
while lesser representations may miss important aspects of
households behaviour if they are not carefully constructed.

4) Computation and communication available to the aggregator
and the households is constrained.

These four constraints proscribe the direct application of stan-
dard mechanisms. In the remainder of this section, we examine
how strategic household behaviour affects the operation of
existing optimisation routines for RDR, and discuss some way
that it can be accommodated in RDR schemes.

Consequences for Existing Optimisation Routines

Many RDR schemes fail to ensure that incentive compatibility
is preserved, or even approximated, during the actual running
of their proposed algorithms and optimisation routines. Con-
sider [4], [6], [2], [3]: All assume that, during negotiation or
distribute computation, the agents act truthfully in response
to their preferences. However, with private preferences for
different slots, mis–reporting during the procedure can be
beneficial for some households, and this may lead to an
inefficient allocation of the energy resources (a similar effect
is noted in [27]).

In other distributed optimisation domains where non–
cooperative game models and techniques have been deployed,
the system is composed of cooperative agents. Like several of
the papers above, these models and techniques have typically
focused on convex, potential and congestion game representa-
tions. Examples of this approach include consensus problems
[28], resource allocation games [29], [16] and distributed
constraint optimisation problems [30].

Given their success, the non–cooperative methods have been
seen as useful in the context of RDR optimisation and control.
However, there is a key difference between the settings de-
scribed above the the RDR scenario. That is in RDR scenarios,
households have their own private preferences, which are
unknown to the system; whereas the techniques themselves
were developed for cooperative problems composed of artifi-
cial or computational agents without private preferences. As
such, their utility functions could be defined absolutely by the
system designer.

This clearly cannot be done in the domain of RDR: As
we argued in the previous section, households’ have their
own preferences for power use. These preferences cannot be
ignored by the system designer and must be addressed in some
manner. We now consider an example that clarifies this point.

In framework proposed in [2],5 households are assumed to
minimise their costs for using electrical energy. Put another

5In [4], a similar model is derived that also incorporates stochastic wind
power generation.

way, the model derived assumes that the only preference that
households hold is to minimise their energy costs, and that they
have no other preferences for the timing of their energy use.
Given this, the households’ utilities can be derived so that they
admit a suitable convexity condition (derived by [13]), which
ensures that conventional convex optimisation techniques can
be used to solve the game for its Nash equilibrium. Although
several techniques could have been employed, the paper pro-
poses that the game be solved iteratively, by each household
broadcasting its best-reply energy use schedule (computed by
the household using an interior-point method) in response to
the most recently calculated aggregate energy use schedule.

Now, under the assumption that the agents are truthful, the pro-
cedure in [2] does converge to a Nash equilibrium. Moreover,
under the (spurious) assumption that the households have no
preference for use of energy other than cost minimisation, the
authors also claim that their method is strategy–proof: that is,
there is no benefit to any household or a group of households
to announce an incorrect usage schedule.

However, when households do have private preferences in
addition to cost minimisation, the household (specifically, a
subset of them) can game the system to their advantage. This
could happen in the following way:

1) A subset of the users Z ⊂ I collude and all report that they
will use more energy than they actually intend to in a slot,
k, that is particularly desirable to them.

2) The energy aggregator increases the price in slot k.
3) Other ’naı̈ve’ users in Y = I \Z respond by shifting some

of their load out of k.
4) At the actual time of energy use, the members of S don’t

meet their power usage forecasts, therefore energy costs
are lower than forecast.

5) Thus, the costs to members of Z are lower than if those
members of Y that shifted their loads from k had not
shifted. Moreover, the costs to the naı̈ve users is greater,
and the overall system cost greater, than if the manipulation
had not taken place.

In addition, the complications of adding in private preferences
— specifically the non–convexities argued earlier — would
also likely cause the game model to fall outside the class of
convex games (and possibly potential games), so the optimi-
sation routine may fail to converge for this reason.

In the next section we give a concrete demonstration of
this type of manipulation in our running example model.
Beyond this, the type of manipulation above could be applied
in the context of many proposed RDR methods, including
those that do not adopt a game–theoretic framework, such as
message passing schemes based on variational inequalities [6],
distributed Lagrangian methods and proximal message passing
[31].
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Running Example: Failing to Consider Strategic Behaviour

Let us assume that an aggregator is used to coordinate the
allocation to energy in our microgrid running example. More-
over, assume that the aggregator uses the method outlined at
the end of the Household Preferences section (which is also
the style of algorithm employed in [32], [5], [8], and others):

1) The households communicate their rewards ri(di) (not util-
ities) for different energy use schedules to the aggregator
(i.e. their values from Table II;

2) The aggregator computes utilities agents (i.e. the tables
given in Appendix A), and deduces the social welfare
optimising Nash equilibrium that maximises the sum of
household utilities;

3) The aggregator instructs each household to play its com-
ponent of this solution; and

4) The households play what they are told, because it is a
Nash equilibrium.

As noted in the previous Running Example section, the joint
schedule (d6,d7) is social-welfare optimal, so if the house-
holds were truthful, this is the solution that the aggregator
would prescribe (see Table III).

Now assume that household A is strategic and does not
necessarily truthfully report its rewards to the aggregator,
while B is truthful. Household A would prefer the equilibrium
at (d7,d6) to be chosen over that of (d6,d7), as this maximises
its own utility. In order to have the aggregator choose this
equilibrium, A can manipulate the coordination scheme above
by misreporting its reward values. There are many ways it
could undertake the manipulation, including the following two:

• Household A could move the aggregators choice of equilib-
rium by misreporting a higher reward for schedule d7, for
example, by reporting ri(d7) = 120.

• Less obviously, A could lower its reported reward for d6
and raise its value for d8, for example by reporting ri(d6) =
90 and ri(d8) = 120. This would move the equilibrium at
(d6,d7) to (d8,d7), which, even with they higher reported
reward for d8, has a lower social welfare than (d6,d7).

Either way, this results in an economically inefficient alloca-
tion of the power to the householders. If both households were
strategic, the ability of the scheme above to allocate energy
use schedules would be seriously curtailed. Above and beyond
this, it is very possible that in a large power distribution system
with many households, a significant group of households could
coordinate to undertake similar manipulations on a large scale.

This type of behaviour is possible in other coordination
schemes, including those where the households provide fore-
casts of their future energy needs (e.g. [2], [6]). It is not
immediately clear how to prevent manipulations of these types,
however in the next section, we discuss some promising
lines of research in mechanism design that could be put

towards developing RDR schemes that are robust to strategic
households.

Accommodating Strategic Household Behaviour

Earlier in this section we discussed some complicating features
of the RDR domain, which make it impractical to apply off-
the-shelf or standard mechanisms to RDR scenarios. We now
give three brief examples of problems that arise when applying
standard mechanisms to RDR problems, to illustrate the need
for new approaches in order to develop useful RDR schemes.

The first is the VCG (Vickrey–Clarke–Groves) mechanism
[11]. VCG is the gold standard in mechanism design and
can be thought of as a generalisation of the well known
second-price sealed-bid auction. Now, we have argued that a
household’s utility for electrical energy use is combinatorial, in
that the value of using energy now depends on the household’s
state, which itself depends on how much energy is allocated in
the future or was in the past (e.g. dishes or clothes only need
to be washed once). With reference to our running example,
assume that the aggregator operates on a more-realistic hourly
division of a day into of 24 time-slots, and computes an
allocation one day at a time. Continue to assume that each
household can ask for only high or low power in each slot.
Under VCG, each household would be asked to submit a
valuation on all of its possible power usage profiles over 24
hours; unfortunately, this tallies to 224−1 > 16 million values
for each household. Thus, given the scenarios time constraints,
directly applying VCG is infeasible, since it will not scale
to the numbers of households likely to be involved in RDR
schemes. Moreover, dynamic VCG mechanisms for various
specific settings have derived by [25], [26], and, recently,
[27] proposed a dynamic VCG–like mechanism that induces
generators to implement the optimal control as computed
by the systems operator: It is noted by the authors of all
three of these works that the mechanisms they derive are
computationally intractable for large problems.

A second example of an infeasible method for aggregating
RDR are the uniform-price supply function market mecha-
nisms used in wholesale electricity markets for dispatchable
generation (i.e., in Australia, the market to determine the
economic dispatch order run 40 hours in advance of dispatch
time [33]). This is a reverse auction, where bids are generation
levels for each price level; that is, generators submit complete
supply schedules for all price levels. If generally applied, these
auctions would consider all possible supply function forms,
which is clearly not possible. Thus, in practice they restrict the
bids to certain forms of supply functions that are well-behaved
(e.g. affine or piece-wise linear functions). However, these
restrictions on the preferences are too severe and lack the com-
binatorial character that household preference representations
require. However, if this constraint on supply function form
is relaxed, the communication required to transmit bids to the
aggregator may be very large, and, moreover, the computation
required would be great or infeasible, thus, again, failing to
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scale.

Third, as an example of effective practical combinatorial
auction design, and also a partial contradistinctive example to
the formats above, is the development of combinatorial clock
auctions (CCAs) in the sale of radio spectrum in the USA
([34], chapter 5). CCAs were used because the bidders had
complicated combinatorial preferences over bundles of spec-
trum. Without going into detail, CCAs are not true mechanisms
in the theoretical sense, so may be only approximately efficient
or truthful. Rather, CCAs are sensibly engineered auction
formats that have proved to work well in specific domains. In
particular, they have the benefit of allowing for price discovery
— that is, of focusing the auction participants’ attention on the
pertinent areas of the allocation and pricing space — without
bidders having to submit their full demand functions to the
aggregator, thereby reducing the aggregator’s computational
load and the system’s communication requirements.

It should be noted that [6] do acknowledge the possibility of
the type of manipulation discussed in the example above, and
discuss ways to moderate this type of behaviour using ad-hoc
penalties for misleading forecasts. A more principled approach
may be use scoring rules, which have been proposed for the
problem of eliciting costly probabilistic forecasts [35], [36].

Conclusion

In this paper we have emphasised the ground-up approach that
is needed to correctly characterise the RDR domain. In doing
so, we have proposed four assumptions that we argue are nec-
essary for an RDR to satisfy for it to be usefully applied to real
RDR problems. We have illustrated the effects of violating our
proposed assumptions, with reference to other proposed RDR
schemes. We also have given several examples of techniques
that satisfy each assumption; a thorough investigation of these
will provide the basis of our future work in this area.

Appendix A

This appendix is included for completeness, and contains the full
matrices for the running example used through the paper, and
specifically those from the Household Preference section.

According to the parameters given earlier, the total generation costs
for the possible combinations of demand levels for the two-player
example are given in the following (symmetric) matrix:

C(x) dB

dA d1 d2 d3 d4 d5 d6 d7 d8
d1 125
d2 110 146
d3 137 114 153
d4 116 160 122 178
d5 132 105 146 126 134
d6 114 146 122 162 122 146
d7 122 162 132 182 134 164 185
d8 122 146 134 164 132 150 169 157

Following [2], costs are divided in proportion to the households total
energy use per day. This is the same for both households, so costs
are divided equally between A and B. Combining these costs with
the rewards in Table II according to equations (4) and (1) gives the
following full utility matrix for household A:

UA dB

dA d1 d2 d3 d4 d5 d6 d7 d8
d1 27.5 35 21.5 32 24 33 29 29
d2 30 12 28 5 32.5 12 4 12
d3 31.5 43 23.5 39 27 39 34 33
d4 42 20 39 11 37 19 9 18
d5 29 42.5 22 32 28 34 28 29
d6 43 27 39 19 39 27 43 25
d7 44 24 39 14 38 48 12.5 20.5
d8 49 37 43 28 44 35 25.5 31.5

and for household B:

UB dB

dA d1 d2 d3 d4 d5 d6 d7 d8
d1 27.5 30 31.5 42 34 38 49 49
d2 35 12 43 20 47.5 22 29 37
d3 21.5 28 23.5 39 27 34 44 43
d4 32 5 39 11 37 14 19 28
d5 24 32.5 27 37 33 34 43 44
d6 33 12 39 19 39 22 53 35
d7 29 4 34 9 33 38 17.5 25.5
d8 29 12 33 18 34 20 25.5 31.5

Dominated strategies can be iteratively eliminated as follows: (i)
Starting with A, its schedules d1, d2 and d4 are eliminated, all
other schedules are best-responses to at least one schedule of B;
(ii) For B, in addition to d1, d2 and d4, schedules d3 and d5 are
also eliminated, as they are only best-responses to A’s schedules d4
and d2, respectively, which were eliminated at the first iteration;
(iii) By the same reasoning, A also eliminates d3 and d5. No other
dominated strategies remain, and the resulting 3×3 bi-matrix is given
in Table III.

Notation

Variable Description
h ∈ H Decision slot and set of H slots to the horizon.
i ∈ I Household i and set of I households.
m ∈ M i Household i’s set of appliances, indexed m.
ai ∈ Ai Household i’s action and action space.
ri
h Household i’s reward function.

di,m
h Energy used by appliance mi in slot h.

di
h Total energy used by i in slot h.

di Vector of total energy use by i over H .
xh Total energy used by all households in slot h.
x Vector of total energy use for each h over H .
Ch Aggregator’s total cost function over H .
φ Aggregator’s cost division vector function.
φi Household i’s component of the cost division.
ui

h Utility function of i for slot h.
U i Total utility of i over H .
si ∈ Si Household i’s state vector and state space.
si,m ∈ Si,m State and state space of appliance mi.
T i,m State transition function for appliance m ∈ M i.
d̃ Vector of total non-discriminatory energy use.
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