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An optimization-based approach for assessing the benefits of
residential battery storage in conjunction with solar PV

Elizabeth L. Ratnam, Steven R. Weller and Christopher M. Kellett

Abstract— If residential customers are billed the real-time cost
of electricity, battery storage may provide a cost-benefit. Con-
sequently there is an opportunity to reduce the consumer’s
cost of electricity by maximizing PV energy output and time-
shifting load through battery storage. In this paper, we propose
a framework based on quadratic programming by which the
cost-benefit of energy time-shifting to a given customer may be
evaluated. Accordingly, the consumer may justify expenditure
on battery storage through either a least cost option of capital
investment or choose to utilize existing electric vehicle (EV)
battery storage, if available.

I. Introduction
Well coordinated distributed energy resources (DERs) provide
advantages to consumers and utilities alike, including eco-
nomic savings, increased security of supply, greater network
efficiencies and a reduced network burden during peak and
minimum load periods [1], [2], [3]. Challenges to optimally
coordinating DERs include intermittency [4] and infrastructure
constraints [3]. Methods to address coordination challenges of
DERs include passive control, e.g demand response pricing
[5], active control, by directly reducing energy consumption
and/or generation [6], and energy time-shifting through battery
storage [4].

For residences with DERs, several authors have considered
approaches to energy time-shifting which involve coordinated
scheduling of battery storage [5], [7] and [8]. A range of
optimization-based approaches to energy time-shifting have
been presented, including approaches based on linear program-
ming [9], particle swarm optimization [10], and NP-hard task
scheduling [11]. Our approach in this paper is similar in that
we seek to optimally schedule battery storage in conjunction
with residential solar photovoltaic (PV) systems in such a
way that the PV energy output is maximized. Implicit in our
approach is the expectation that future costs of residential
batteries will reduce significantly, for example wide-spread
uptake of electric vehicles (EV) may provide opportunities
to utilize decommissioned EV batteries [12], [13].

In this paper we present a quadratic program (QP)-based
minimization of the energy supplied by, or to, the grid in a
residential PV system with co-located battery storage. Under
the assumption that daily residential load and solar PV gener-
ation are known (or can be accurately forecast), the QP-based
framework presented in this paper leads to a battery charge
and discharge schedule for the day ahead. Our approach for
finding the preferred rate to charge and discharge a battery is
introduced in Section II and the financial incentives to energy
time-shift are defined in Section III. Section IV quantifies
consumer savings, and Section V presents an assessment of

the benefits for residential battery storage for the residential
network presented in Figure 1, including guidance on battery
selection.

Fig. 1. Residential network illustrating the direction of positive power flows
and financial incentives to energy time-shift. Arrows associated with gk , lk ,
βk and πk illustrate the assumed direction of positive power flow. Financial
incentives for each meter M1, M2 and M3 are represented by vectors ηb and
ηc (in $/kWh), in which arrows illustrate the direction of power flow relevant
for ηb and ηc.

Notation

Let Rs denote s-dimensional vectors of real numbers and Rs
≥0

s-dimensional vectors with all non-negative components. I
denotes the s-by-s identity matrix, 0 denotes the s-by-s all-
zero matrix, and 1 ∈Rs

≥0 denotes the all-1s column vector of
length s.

II. Problem formulation

A. Definitions and objectives

Figure 1 illustrates the topology of the network under consid-
eration, including a set of meters M = {M1,M2,M3} installed
for the purpose of billing and compensation. For each k ∈
{1, . . . ,s}, meter M1 measures the average PV generation gk
(in kW), meter M2 measures the average power from node 1
to node 2 (lk−βk in kW), and meter M3 measures the average
power πk (in kW) supplied by (or to) the grid. Meters M2
and M3 may be bi-directional, whereas meter M1 needs only
be unidirectional since PV generation gk ≥ 0 for all k. Also
shown in Figure 1 are vectors ηb and ηc, which represent
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financial incentives for billing and compensation respectively,
defined in Section III.B.

The power flows indicated in Figure 1 are represented by
vectors of length s, where s is the number of time intervals of
length ∆, and T = s∆ (in hours) is the time window of interest.
In this paper we generally consider T = 24 hours, ∆ = 1/2
hour (30 minutes), which implies s = 48. Other choices are
certainly possible, subject only to commensurability of T , ∆,
and s.

We represent the average power delivered to the resi-
dential load (in kW) over the period ((k − 1)∆,k∆) by
lk for all k ∈ {1, . . . ,s}, and define the load profile over [0,T ]
as l := [l1, . . . , ls]T ∈ Rs

≥0 . Likewise we represent the aver-
age PV generation (kW) over the period ((k−1)∆,k∆) by
gk for all k ∈ {1, . . . ,s}, and define the generation profile over
[0,T ] as g := [g1, . . . ,gs]

T ∈Rs
≥0 . In what follows, we assume

the load and generation profiles are given.

We represent the average power (kW) delivered from (or to)
the battery over the period ((k−1)∆,k∆) by βk > 0 (or βk <
0) for all k ∈ {1, . . . ,s}, and define the battery profile over
[0,T ] as β := [β1, . . . ,βs]

T ∈ Rs. By convention we represent
charging (discharging) of the battery by βk < 0 (βk > 0).
To capture the limited “charging/discharging capacity" of the
battery, we constrain βk as follows:

B≤ βk ≤ B for all k ∈ {1, . . . ,s} , (1)

where typically B < 0 and B > 0.

Given β , the state of charge of the battery (in kWh) at time
k∆ is denoted by χk, where

χk := χ0−
k

∑
j=1

β j∆ for all k ∈ {1, . . . ,s} , (2)

and χ0 denotes the initial state of charge of the battery. If
we represent the battery capacity (in kWh) by C ∈ R≥0, it
necessarily follows that both the initial state of charge χ0
and the state of charge at later time k∆ are constrained as
follows:

C ≤ χk ≤C for all k ∈ {0,1, . . . ,s} , (3)

where typically C = 0.

We represent the average power (in kW) supplied by (or to) the
grid over the period ((k−1)∆,k∆) by πk for all k ∈ {1, . . . ,s}
and define the grid profile over [0,T ] as π := [π1, . . . ,πs]

T ∈
Rs. By convention we represent power flowing from (to) the
grid to (from) the energy system by πk > 0 (πk < 0).

From the configuration of the residential energy system in Fig-
ure 1, we observe that the following power balance equation
must hold:

lk = πk +gk +βk, for all k ∈ {1, . . . ,s} . (4)

We seek to minimize the impact of the residential energy
system on the grid, given a financial incentive to energy time-

shift, by minimizing the following expression:
s

∑
k=1

hkπ
2
k , (5)

where hk is a selectable weighting such that hk ≥ 1 for all
k ∈ {1, . . . ,s}.

Specifically, given load and generation profiles l and g, and
given battery constraints χ0, C, C and B, B we seek a
battery profile β and a grid profile π which minimize the
expression in (5), subject to satisfaction of the power balance
in equation (4).

The minimization in (5) is subject to both inequality and
equality constraints imposed by the battery (1)–(3) and the
power balance equation in (4), respectively. Lemma 1 below
establishes this constrained minimization as a quadratic pro-
gram (QP). Let

T := ∆


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 0
...

...
...

. . .
...

1 1 1 · · · 1

 ∈ Rs×s, (6)

B := 1B, B := 1B, (7)

C := 1(χ0−C), C := 1(C−χ0), (8)
H := diag(h1, . . . ,hs). (9)

Lemma 1: The minimization of expression (5), subject to
battery constraints (1)-(3) and the power balance equation (4),
can be written as

min
x∈R2s

xT Hx (10)

such that

A1x≤ b1, (11)
A2x = b2, (12)

where

x :=
[
πT β T ]T ∈R2s, (13)

H :=
[

H 0
0 0

]
∈R2s×2s, (14)

A1 :=


0 I
0 −I
0 T
0 −T

 ∈R4s×2s, (15)

A2 :=
[
I I

]
∈Rs×2s, (16)

b1 :=
[
BT BT CT CT

]T
∈R4s, (17)

b2 :=l−g ∈Rs. (18)

Proof: The result follows directly from equations (1)–(3), and
substitution of definitions (6)–(9) into equations (13)–(18). �

The grid profile resulting from Lemma 1 is said to be QP
energy-shifted, and we will refer to the process of a customer
using Lemma 1 to determine daily battery and grid profiles as
QP energy-shifting.
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B. Example

We illustrate the application of Lemma 1 at a customer’s
premise where the load includes a utility controlled heated
water cylinder [14].1 Let T = 24 hours, ∆ = 30 minutes and
s = T/∆ = 48, and let load and generation profiles l and g
be specified as shown in Fig. 2(a). Given battery capacities
C = 1kWh and 10kWh, let C = 0, χ0 = 0.5 C (initial battery
state of charge), B=−B= 1 kW (charge/discharge limits), and
let weights hk = 1 for all k.

In Fig. 2(a) we observe the load profile peaks around midnight,
consistent with the utility switching on the all-electric-heated
water cylinder at the customer premises, and the generation
profile peaks around midday. Consequently the peak genera-
tion does not align with the peak load at the residence.
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Fig. 2. (a) Load and generation profiles l and g; (b) grid and battery profiles
π and β for C =0kWh; (c) grid and battery profiles π and β for C =1kWh;
(d) grid and battery profiles π and β for C = 10kWh.

Figure 2(b) illustrates the base-line grid profile to which we
compare the grid profiles in Fig. 2(c)–(d). The base-line grid
profile has no battery to energy time-shift the grid profile π

appearing in (5) (C = 0kWh). Therefore π is calculated directly
from the power balance equation in (4) since clearly βk = 0.
The grid profiles π illustrated in Figure 2(c)–(d) arise from
the solution of the QP in Lemma 1. Comparing the base-
line results in Figure 2(b) to the grid profile in Fig. 2(c), we
observe the 1kW battery charges (βk < 0) to increase the base-
line grid profile (e.g. from −1.13kW to −0.61kW between
11.30-Midday), and discharges (βk > 0) to reduce the base-
line grid profile (e.g. from 3.46kW to 2.46kW between 23.30-
Midnight). In Fig. 2(d) we observe further reductions in the

1In some countries, residents often allow the utility to control their all-
electric-heated water systems for periods in the day, given a financial incentive.
For these customers, the utility switches their water-heating services on during
periods of low load, and off during periods of peak-load, in a manner that
ensures minimal impact to the network.

magnitude of π , except between 23.30-Midnight, due to the
battery discharge constraint of 1kW.

This example demonstrates the reductions in magnitude of
the grid profile π subject to constraints, including the battery
charge/discharge constraints, and capacity C.

C. Extended definition of grid profile

We now extend our definition of grid usage over the period
((k − 1)∆,k∆) to include explicit reference to the battery
capacity C, and weights hk as follows:

π
C
k (hk) := lk−gk−βk for all k ∈ {1, . . . ,s} , (19)

where lk, gk, βk and hk remain as previously defined. We
consequently denote the grid profile over [0,T ] by

π
C(H) := [πC

1 (h1), . . . ,π
C
s (hs)]

T ∈ Rs. (20)

When battery capacity C = 0, it follows

π
0
k := lk−gk for all k ∈ {1, . . . ,s} , (21)

since the battery charging/discharging capacity βk = 0, k ∈
{1, . . . ,s}. The case where C = 0 is defined as a base-line grid
profile against which we compare future grid profiles and is
denoted by

π
0 := [π0

1 , . . . ,π
0
s ]

T . (22)

Furthermore, we note π0 is not a function of the selectable
weights in H, as the base-line grid profile is solely a function
of load and generation profiles in (21).

Remark 1: The grid profile π obtained from solving the
quadratic program in Lemma 1 depends not only on the battery
constraints C, C, B, B and χ0, selected weightings hk, but also
the load and generation profiles l and g, respectively. Con-
sequently π is the function π = π( l, g, C, C, B, B, χ0, H).
For notational simplicity, however, we will henceforth omit
the functional dependence of π on the the load/generation
profiles and all the battery constraints other than the battery
capacity C, preferring instead to simply write πC(H), where
no ambiguity arises. This notational convention reflects our
primary degrees of design flexibility, namely battery capacity
C and the weighting matrix H.

III. Billing for a single customer

In this section we define the energy bill for a single residential
customer for the household PV system depicted in Figure 1.
To calculate the energy bill we require a financial policy
(in $/kWh), and a battery of capacity C when the customer
uses QP energy-shifting (Lemma 1). Since the financial policy
requires meters in certain locations, with particular modes
of operation, we also define the metering topology in Sec-
tion III.A.
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A. Metering topology

To formalize the notion of metering topology we define two
metering modes in terms of the meters M ∈M , and provide an
example with respect to meter M2 shown in Figure 1.

1. Gross metering mode: requires only uni-directional meter-
ing. We say that meter M2 operates in gross metering mode
if it measures power flow from node 1 to the battery/load
node 2, but not power delivered in the reverse direction. That
is, meter M2 measures and records only power flows for
which lk−βk ≥ 0. In the event lk−βk < 0, the meter records
0kW.

2. Net metering mode: requires bi-directional metering [15].
We say that meter M2 operates in net metering mode if it
measures power flow in both directions, i.e. from node 1 to
the battery/load node 2 (lk−βk≥ 0), as well as power delivered
in the reverse direction (i.e. lk−βk < 0).

The metering topology is defined by the mode of operation
(gross or net) of each meter M ∈M in Figure 1. If in gross
metering mode, the direction of power flow must also be
included.

The metering topologies considered in this paper are defined
below, with the direction of positive power flow as per
Figure 1, defined in Section II.A.

• Metering topology 1: M1 and M2 operate in gross metering
mode. M3 is not installed. M1 measures and records the
generation profile gk ≥ 0 for all k, M2 measures and records
the power flow lk−βk ≥ 0 for all k.

• Metering topology 2: M3 operates in net metering mode. M1
and M2 are not installed.

B. Financial policies

Financial incentives intended to modify consumer behaviour
associated with energy usage are captured in our definition
of a financial policy. Example incentives include time-of-use
(T.O.U.) pricing, feed-in-tariffs and net metering [15], [16].
In what follows we formalize the notion of a financial policy,
encompassing one or more of the example incentives above,
along with other more general cases.

To formalize the notion of a financial policy, we define
an electricity billing profile and an electricity compensation
profile over [0,T ], for each installed meter in M . The direction
of power flow associated with electricity billing/compensation
is defined with reference to the direction of positive power
that is specified at each meter M ∈ M . We denote elec-
tricity billing (in $/kWh) at meter M ∈M over the period
((k−1)∆,k∆) by ηb

k (M) for all k ∈ {1, . . . ,s}, and define
the electricity billing profile over [0,T ] at M as ηb(M) :=
[ηb

1 (M), . . . ,ηb
s (M)]T ∈Rs

≥0. Likewise we denote the electric-
ity compensation (in $/kWh) at meter M ∈M over the period
((k−1)∆,k∆) by ηc

k (M) for all k ∈ {1, . . . ,s}, and define the
electricity compensation profile over [0,T ] at M as ηc(M) :=
[ηc

1(M), . . . ,ηc
s (M)]T ∈ Rs

≥0.

In order to implement a financial policy, certain types of meters

are required in particular locations. For example a financial
policy may require the meter M1 (in Fig. 1), which records
positive power flows from the rooftop PV to node 1. For this
meter the financial policy will specify the electricity billing
and compensation profiles ηb(M1), ηc(M1), respectively. If
the electricity billing (or compensation) profile at meter M1
is defined by ηb

j (M1) = 0 (or ηc
j (M1) = 0) for all j,k ∈

{1, . . . ,s}, than it is sufficient that meter M1 operates in gross
metering mode; where the power flow to be measured is in
the same direction specified for electricity compensation (or
billing).

We now define a financial policy over [0,T ], by the day ahead
electricity billing and compensation profiles at each installed
meter in M . An example financial policy is defined with
reference to Fig. 1 for M = {M1,M2,M3}. The direction of
positive power flow at meter M1 is defined by g (from the
solar PV to node 1), and electricity is compensated in this
direction ηc(M1). The direction of positive power flow at
meter M2 is defined by l− β ≥ 0 (from node 1 to node 2),
and electricity is billed in this direction ηb(M2). The direction
of positive power flow at meter M3 is defined by π (from
the PCC to node 1), and electricity is billed in this direction
ηb(M3). For each electricity compensation (or billing) profile
ηb(M) (or ηc(M)), there also exists an electricity billing (or
compensation) profile ηc(M) (or ηb(M)) for power flowing
against the positive direction at meter M ∈M .

The financial policies considered in this paper are defined with
reference to metering topologies 1 and 2 respectively, defined
in Section III.A. The financial policy associated with metering
topology 1 includes an electricity compensation profile at
meter M1 (for power flow from the solar PV to node 1),
and an electricity billing profile at meter M1 (for power
flows in the reverse direction), represented by ηc(M1) and
ηb(M1) respectively; and an electricity compensation profile
at meter M2 (for power flow from node 2 to node 1), and
an electricity billing profile at meter M2 (for power flows
from node 1 to node 2), represented by ηc(M2) and ηb(M2)
respectively. Furthermore ηb

j (M1) = 0 and ηc
j (M2) = 0, for

all j,k ∈ {1, . . . ,s}, hence it is sufficient that meters M1 and
M2 operate in gross metering mode, as per the definition
of metering topology 1. The financial policy associated with
metering topology 2 has an electricity compensation profile
at meter M3 (for power flow from node 1 to PCC), and an
electricity billing profile at meter M3 (for power flow from
the PCC to node 1), represented by ηc(M3) and ηb(M3)
respectively.

C. Energy bill

We now define the residential energy bill (in $/day) in terms
of the respective financial policy associated with metering
topologies 1 and 2 (Section III.B.). We assume the day ahead
billing and compensation profiles in the respective financial
policies are fixed by the utility or regulatory body and available
to the consumer. For a fixed battery capacity C, we also
observe that the choice of weighting matrix H is critical
to minimizing the energy bill, when the customer uses QP
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energy-shifting.

In defining the energy bill, we include the cost associated
with the battery’s initial state of charge χ0, denoted by ηb

0 (in
$/kWh) and the cost associated with the battery’s remaining
state of charge χs, denoted by ηc

0 (in $/kWh). In this paper we
assume the cost associated with the battery’s initial and final
states of charge are equivalent ηb

0 = ηc
0 , though other choices

are possible and investigation of this case is left for future
research.

In the formalization of the energy bill associated with the
financial policy relating to metering topology 1, we define
σk(M1) and σk(M2) as follows:

σk(M1) =

{
ηc

k (M1), if gk ≥ 0
ηb

k (M1), if gk < 0,
(23)

σk(M2) =

{
ηb

k (M2), if lk−βk ≥ 0
ηc

k (M2), if lk−βk < 0,
(24)

and denote σ(M1) := [σ1(M1), . . . ,σs(M1)]
T ∈ Rs

≥0 and
σ(M2) := [σ1(M2), . . . ,σs(M2)]

T ∈ Rs
≥0 over the period

[0,T ]. Recall ηb
j (M1) = 0 and ηc

j (M2) = 0, for all j,k ∈
{1, . . . ,s}.

In order to minimize the energy bill associated with metering
topology 1, we choose the weighting matrix for a given
battery capacity with constraints (1)–(3) known and fixed, as
follows:

H1 := H(σ(M1),σ(M2)). (25)

Through an appropriate selection of H1 in equation (25), we
define the residential energy bill associated with metering
topology 1, denoted by ΣC(H1) (in $/day) by

Σ
C(H1) := T ((l−β )T

σ(M2)−gT
σ(M1))+η

b
0 (χ0−χs).

(26)

When the battery capacity C = 0, the energy bill defined in
(26) reduces to

Σ
0 := T (lT

η
b(M2)−gT

η
c(M1)), (27)

since the battery charging/discharging capacity βk = 0 for
all k ∈ {1, . . . ,s}, rendering the selectable weights in H1
irrelevant. The case where C = 0 also serves as a base-line
energy bill, which we use as a comparison when assessing the
benefits of battery storage.

Remark 2: The energy bill notational convention ΣC(H1) is
simplified, and consistent with our primary degrees of design
flexibility, the battery capacity C and the weighting matrix.

To formalize the energy bill associated with metering topology
2, we define σk(M3) in terms of the financial policy as
follows:

σk(M3) =

{
ηb

k (M3), if πC
k (hk)≥ 0

ηc
k (M3), if πC

k (hk)< 0,
(28)

and we denote σ(M3) := [σ1(M3), . . . ,σs(M3)]
T ∈ Rs

≥0 over
the period [0,T ]. In order to minimize the energy bill associ-
ated with metering topology 2, we choose the weighting matrix
for a given battery capacity with constraints (1)–(3) known and
fixed, as follows:

H2 := H(σ(M3)). (29)

Through appropriate selection of H2 in (29), we define the
energy bill associated with the financial policy relating to
metering topology 2 by

Σ
C(H2) := T π

C(H2)
T

σ(M3)+η
b
0 (χ0−χs), (30)

which reduces to the base-line energy bill for C = 0 as
follow:

Σ
0 := T (l−g)T

σ(M3), (31)

where π0 = l−g since clearly the battery charging/discharging
capacity βk = 0 for all k ∈ {1, . . . ,s}.

IV. Savings for a single customer
In this section we define the energy saving for the household
PV system depicted in Figure 1. The results in this section
allow a single customer to assess the cost-effectiveness of
installing a battery of a given size against a break-even
cost.

A. Energy savings

To examine the effectiveness of QP energy-shifting for a given
size battery, we define the energy savings (in $/day). The
energy savings are denoted by ΨC(H) and defined by

Ψ
C(H) := Σ

0−Σ
C(H). (32)

We recall from Section III.C, the energy bill ΣC(H) is defined
for a particular financial policy and selection of weights in
H, given load and generation profiles l and g, a battery of
a given size C, with constraints (1)–(3) known and specified.
When C = 0, Σ0 denotes the base-line energy bill.

For a break-even cost denoted by ζ (C) (in $/day), indicating
the cost associated with installing battery storage (including
the cost of a given size battery C), we define the net savings
that accrue to a customer with battery storage. The net savings
are denoted by θC(H) (in $/day), and defined by

θ
C(H) := ζ (C)−Ψ

C(H), (33)

where θC(H) > 0 implies a cost-effective installation,
θC(H) = 0 implies cost-neutrality, and θC(H)< 0 implies no
financial benefit for battery storage. Given the net savings, we
define the annual savings in $/yr as follows:

Θ
C(H) := 365×θ

C(H). (34)

In the definition of ΘC(H) we assume the initial state of charge
χ0 is the same at the start of each time window T , where T
is 24 hours.
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B. Special case: zero energy savings

Consider the special case where there is a fixed price for
electricity (in $/kWh) at all installed meters in M , irrespective
of power flow direction and time of day. Lemma 2 below
demonstrates that under these circumstances, there is no fi-
nancial incentive for a resident to install battery storage. That
is, since the battery acts as an energy time-shifter, the lack of
differential pricing at any point in time gives no incentive to
energy time-shift.

Lemma 2: Let the cost associated with the initial and final
states of charge of the battery, and electricity billing and
compensation profiles in the financial policy, be defined as
follows:

η
b = η

c for all M ∈M , (35)

η
b
j = η

b
k = η

b
0 = η

c
0 for all j,k ∈ {1, . . . ,s}, (36)

and ηc
j = ηc

k for all j,k ∈ {1, . . . ,s}.

Assume all meters M ∈M are installed such that all power
flows are measured and recorded. Then for all choices of
battery capacity C and weighting matrix H, the energy savings
are ΣC(H) = 0.

Proof: Consider metering topology 2, so that M = M3.
Let

χs−χ
0 =−

s

∑
k=1

βk∆, (37)

as in equation (2). Substitution of (4), (37) and (35)–(36) into
(28) and (30) yields:

Σ
C(H2) =T π

C(H2)
T

σ(M3)+η
b
0 (χ0−χs)

=T (l−g−β )T
σ(M3)−η

b
0 (χs−χ

0)

=T (l−g−β )T
σ(M3)+β

T
σ(M3))

=T (l−g)T
σ(M3)

=Σ
0,

where the base-line energy bill Σ0 is defined in equation (31).
The energy savings follow from equation (32):

Ψ
C(H2) = Σ

0−Σ
C(H2) = 0, (38)

and similarly for other metering topologies, provided the
meters in M measure and record all power flows. �

V. Assessing the benefits of residential battery
storage
In this section we assess the financial benefits of QP energy-
shifting for a single customer with battery storage in the
residential setting shown in Fig. 1. Our approach has two
strands. In Section V.A we assume that the battery parameters
(1)–(3) are known and fixed, and we seek to determine a
preferred way of using the battery by selecting an appropriate
weighting matrix H in the QP. In Section V.B we present a
methodology whereby the most cost-effective battery can be
selected from a set of candidates.

A. Heuristic approach for selecting H

In Section II, the minimization of expression (5) was presented
as a constrained quadratic program (Lemma 1), where the
weights hk in H were selectable. In this section we consider
the specification of the matrix H with a view to maximizing
the annual savings which accrue to a customer with rooftop
solar generation, a battery, and residential load as shown in
Figure 1.

In practice, the matrix H that maximizes the annual savings
is difficult to obtain, as it depends on a variety of factors
including financial policies, metering topologies, and daily
variations in load and generation profiles. To address this
problem we propose a greedy-search heuristic for obtaining
a so-called preferred H, which is in turn based upon a
base-line H (denoted H0). When selecting the weights in
the preferred H, our rationale is to increase weights when
electricity billing is high, and decrease weights when elec-
tricity billing is low. We also include constraints to mitigate
against numerical difficulties with the solution of the quadratic
program in Lemma 1. To this end, weights in the base-line H
are scaled by the minimum cost, and capped at a user-specified
maximum.

The basic idea of the heuristic is to increase each weight hk
in H0 for as long as this increase leads to an increased energy
saving in (32), or until a user-defined maximum is reached.
To cap the weights hk we introduce the following saturation
operation:

sath1(hk) :=


hk, if 1≤ hk ≤ h
1, if hk < 1
h, if hk > h,

(39)

where the lower bound is 1 in accordance with the definition
of hk in Section II.A, and h is set by the user. The constant h
is chosen to mitigate against numerical difficulties in solving
the QP in Lemma 1. In this paper, we set h = 1000.

To formalize the definition of the weighting matrix, let

η̃k := ∑
M∈M

η
b
k (M), ∀ k ∈ {1, . . . ,s} (40)

η
? := min

k∈{1,...,s}
η̃k, (41)

and define the weighting matrix H0 as follows:

H0 := diag
[
H(1)

0 , . . . ,H(k)
0 , . . . ,H(s)

0

]
(42)

H(k)
0 := sath1

(
η̃k/η?

)
. (43)

Given H0, the proposed heuristic requires the function for
energy savings Ψ(·) defined in (32). Recall the energy savings
function Ψ(·) requires the constraints and solution to the
QP in Lemma 1, and the energy bill Σ(·) pertaining to a
given metering topology and financial policy, as defined in
Section III. To simplify the notation, we use Ψ(·) rather than
ΨC(H) to indicate the battery capacity C is fixed.

The main loop in the heuristic (lines 6–18) doubles weights
in H0 progressively, from the largest to the smallest element
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in element in H0. The set of live indices s̃ keeps track of the
indices in H0 that are yet to be increased, and Is̃ denotes an
s-by-s matrix in which Is̃

j, j := 1 if j ∈ s̃ and zero otherwise.

Heuristic: Returns the preferred H given Ψ(·)
Input: l, g, C, B, B, χ0, π0, h, H0,

H = I, Ψ0 = Ψ(H0), s̃ = {1, . . . ,s}
1 for k ∈ {1, . . . ,s} do
2 if π0

k = 0 then
3 j = {p ∈ {1, . . . ,s}|π0

p = 0}
4 s̃ = s̃\ j
5 H( j)

0 = 1

6 while H(s̃)
0 > 1 do

7 k? = argmaxs̃(H
(s̃)
0 )

8 H0 = diag
[
H(1)

0 , . . . ,2H(k?)
0 , . . . ,H(s)

0

]
9 H(k?)

0 = sath1
(

H(k?)
0

)
10 Ψ0 = Ψ(H0)

11 while Ψ0 > Ψ0 and H(k?)
0 < h do

12 Ψ0 = Ψ(H0)
13 H0 = H0

14 H0 = diag
[
H(1)

0 , . . . ,2H(k?)
0 , . . . ,H(s)

0

]
15 H(k?)

0 = sath1
(

H(k?)
0

)
16 Ψ0 = Ψ(H0)

17 H = diag
[
H(1)

0 , . . . ,H(k?)
0 , . . . ,H(s)

0

]
18 s̃ = s̃\ k?

19 H = H+ Is̃

B. Guidance for selecting the battery capacity

In Section IV, we defined the annual savings that accrue to a
single customer given a battery of capacity C. In this section
we consider the specification of the most cost-effective battery
capacity, given a finite ordered set C of size m from which to
choose, for example C = {0,1, . . . ,50}.

The finite ordered set C contains m batteries of equivalent
charge/discharge limits B, B, with initial states of charge
χ0 = ρC, where ρ is known and fixed (e.g ρ = 0.5).
For n ∈ {1,2, . . . ,m}, we define the ordered set by C =
{C1, . . . ,Cn, . . .Cm}, with C1 ≤ ·· · ≤Cn ≤ ·· · ≤Cm.

In formalizing the notion of a cost-effective battery capacity,
we first define the maximum battery capacity, denoted by
C̃:

C̃ := min
Cn∈C

Cn s.t π
Cn(H) = π

Cn+1(H). (44)

In the event the specified maximum in (44) does not exist, let
C̃ = Cm. We then eliminate battery capacities greater than C̃

from C and denoted the reduced set by Ĉ , as follows:

j := {p ∈ {1, . . . ,m}|Cp > C̃}, (45)
n := n\ j, (46)

Ĉ := {C1, . . . ,Cn, . . . ,C̃}. (47)

Given the break-even costs for all Cn ∈ Ĉ , denoted by
{ζ (C1), . . . ,ζ (C̃)}, we define the cost-effective battery capac-
ity denoted by Ĉ as follows:

Ĉ := argmaxCn∈Ĉ θ
Cn(H). (48)

Recall the net savings θCn(H) is defined in (33). In the
event θCn(H) ≤ 0, we say there are no cost-effective battery
capacities. In the event (48) has multiple cost-effective battery
capacities, let Ĉ = min

Ĉ∈Ĉ
Ĉ.

C. Example

We measured load and generation profiles on a winters day
in 2011, for each of eight randomly selected low voltage
customers, located in Ausgrid’s distribution network, NSW
Australia. The load and generation profiles l and g for each
customer (not shown for lack of space) are defined with T = 24
hours, ∆ = 30 minutes, and s = T/∆ = 48.

We calculate annual savings for each of the eight cus-
tomers given financial policies associated with metering
topologies 1 and 2 (in Section III.A), via a heuristic
method of selecting H (Section V.A). For each customer
the annual savings are calculated for both a 10 kWh
or 30 kWh battery. In all cases, the battery constraints
are defined in (1)–(3), with C = 0, χ0 = 0.5 C, and
B = −B = 1 kW.2 For metering topology 1, the length-s
billing and compensation profiles (each given in $/kWh)
are ηb(M1) = ηc(M2) = [0, . . . ,0]T , ηc(M1) = [0.4, . . . ,0.4]T ,
and ηb(M2) = [. . . ,ηb

k , . . . ]
T where ηb

1−14 = 0.03, ηb
15−28 =

0.06, ηb
29−40 = 0.3, ηb

41−44 = 0.06, and ηb
45−48 = 0.03.

For metering topology 2, the length-s compensation and
billing profiles (in $/kWh) are ηc(M3) = [0.4, . . . ,0.4]T , and
ηb(M3) = [. . . ,ηb

k , . . . ]
T , such that ηb(M3) = ηb(M2). For

each customer ηb
0 = ηc

0 = 0.03, and the break-even cost is
ζ (C) = $0, irrespective of the battery capacity C. 3

Table 1 presents the annual savings for each of the eight
customers given a 10kWh or 30kWh battery, for both financial
policies relating to metering topologies 1 and 2, and for a base-
line and preferred H (Section V.C). The preferred H is denoted
by H1 for metering topology 1, and by H2 for metering
topology 2 (Section III.C). We highlight the maximum annual
savings per year for the eight customers with bold font, and in
this example the financial policy relating to metering topology
1 is preferred for all customers, noting that either financial
policy benefits customers 2 and 8 equally. We recall Ĉ denotes

2Often 10kWh and 30kWh batteries allow a faster charge/discharge rate
than our chosen charge/discharge rate of B = −B = 1 kW. We may justify
choosing this charge/discharge rate in situations such as limitations in the
cable ratings at the customers premise.

3We may justify choosing a break-even cost ζ (C) = $0 for situations where
we have a decommissioned electric vehicle (EV) battery, or where we may
utilize some portion of an existing EV battery.
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TABLE I
ANNUAL SAVINGS FOR CUSTOMERS 1–8

Battery Metering Topology Metering Topology
1 2

Customer C ΘC(H0) ΘC(H1) ΘC(H0) ΘC(H2)
(kWh) $/yr $/yr $/yr $/yr

10 354 455 −119 −191
30 429 455 −44 −18

10 756 869 755 8692
30 901 991 901 991
10 237 305 204 2723
30 306 306 273 273

10 262 327 195 2604
30 328 328 261 261

10 342 436 339 4335
30 419 437 416 434

10 576 704 390 5186
30 661 705 475 519

10 378 435 −71 −137
30 436 436 −13 −13

10 981 981 981 9818
30 1530 1722 1530 1722

a cost-effective battery capacity (Section V.B), and for the
preferred H, Ĉ = 10kWh for customer 1, and Ĉ = 30kWh
for customers 2–8, highlighted in bold font.

From Table 1, customers 1 and 7 have no financial incen-
tive to QP energy-shift given the financial policy associated
with metering topology 2. The significance of selecting an
appropriate weighting matrix H, rather than a larger battery
capacity is observed for customers 3, 4 and 7, with annual
savings associated with metering topology 1. Choosing the
base-line weighting matrix H0, instead of H1, means these
customers require a larger battery capacity (C = 30kWh) for
comparable annual savings (the variation in annual savings is
just $1). However, if we are careful in selecting H1, a smaller
battery capacity may suffice (C = 10kWh). Therefore these
customers are more sensitive to the selection of H, than the
battery capacity C ∈ C .

VI. Conclusions

This paper has presented a QP-based framework for assessing
the benefits for residential battery storage in conjunction with
solar PV, which provides guidance on selecting a cost-effective
battery capacity. Given day ahead load and generation profiles,
our approach uses known battery constraints and financial
incentives to energy time-shift, maximizing the energy savings
that accrue to a single customer, whilst reducing the network
burden associated with peak load and peak PV generation.
Future work will consider extensions to this framework, in-
cluding a more general network topology and uncertainty in
day-ahead predictions of load and generation profiles.
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