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Abstract—Linear sensitivity distribution factors (DFs) are
commonly used in power systems analyses, e.g., to determine
whether or not the system is N-1 secure. This paper proposes a
method to compute linear sensitivity distribution factors (DFs)
in near real-time without relying on the system power flow
model. Instead, through linear least-squares estimation (LSE),
the proposed method only uses high-frequency synchronized data
collected from phasor measurement units (PMUs) to estimate
the injection shift factors (ISFs). Subsequently, ISFs can be used
to compute other DFs. Such a measurement-based approach is
desirable since it is adaptive to changes in system operating
point and topology. We illustrate the value of the proposed
measurement-based DF estimation approach over the traditional
model-based method through several examples.

I. INTRODUCTION

In order to monitor operational reliability, power system
operators rely heavily on online studies using a model of the
system obtained offline [1]. One such study is N-1 contingency
analysis, with which operators determine whether or not the
system will meet operational reliability requirements in case of
outage in any one particular asset (e.g., a generator or transmis-
sion line) [2]. In general, these model-based online studies may
include repeated computations of power flow solutions using
the full nonlinear system model, a linearized model, or, in the
simplest case, linear sensitivity distribution factors (DFs) such
as injection shift factors (ISFs), power transfer distribution
factors (PTDFs), line outage distribution factors (LODFs), and
outage transfer distribution factors (OTDFs). For example, in
the context of N-1 contingency analysis, ISFs and LODFs are
used, in conjunction with an estimate of the system’s current
operating point, to predict the change in operating point in
the event that an outage in certain generating facilities or
transmission lines occurs. These post-contingency operating
point predictions are then used to determine whether or not
the system is N-1 secure.

Conventional model-based studies are not ideal because (i)
an accurate model containing up-to-date network topology is
required, and (ii) the results from such model-based studies
may not be applicable if the actual system evolution does
not match any predicted operating points due to unforeseen
circumstances such as equipment failure, outages in external
areas, or unpredictable levels of renewable generation. For
example, in the 2011 San Diego blackout, operators could not
detect that certain lines were overloaded or close to being

overloaded because the network model was not up-to-date,
which caused state estimator results to be inaccurate [1]. Thus,
traditional model-based techniques may no longer satisfy the
needs of monitoring and protection tasks, and therefore it
is important to develop measurement-based power system
monitoring tools that are adaptive to changes in operating
point (such as generation or load variations) and topology
(such as outage of a transmission line). In this regard, phasor
measurement units (PMUs) are an enabling technology for the
development of such measurement-based monitoring tools.

Unlike current system measurements, PMUs measure volt-
ages, currents, and frequency at a very high speed (usually
30 measurements per second) [3], and phasors measured at
different locations by different devices are time-synchronized
[4]. In this paper, we propose a method to estimate linear
sensitivity DFs that exploits only measurements obtained from
PMUs in near real-time without relying on the system power
flow model. These online DFs can be used in numerous
applications in power system static security assessment, in-
cluding contingency analysis, post-contingency generation re-
dispatch, congestion management, and model validation. In
particular, we rely on real power bus injection and line flow
data obtained from PMUs to compute DFs through linear least-
squares estimation (LSE).

Distribution factors are widely known and used in power
systems analyses [5], [6]. Existing approaches to computing
DFs typically employ so-called DC approximations, which
can provide fast DC contingency screening [7]. They do
not, however, have the flexibility of adapting to changes in
network topology or generation and load variations, which
can all affect the actual linear sensitivities significantly. Recent
attention has been given to the computation of the line outage
distribution factor due to their prominent role in revealing and
ameliorating cascading outages [8], [9]. Additionally, work
has been done in the area of detecting line outages using
PMU measurements [10], [11]. Such proposed approaches
still largely rely on a model of the system and utilize the
so-called DC approximation. In [12], phasor measurements
were used in online contingency analysis by monitoring buses
that had been classified as high-risk by an offline study.
Other applications for PMU measurements include monitoring,
protection, and control of power networks (see e.g., [13] and
references therein).
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II. DF COMPUTATION APPROACH

Distribution factors are linearized sensitivities used online
in contingency analysis and remedial action schemes. A key
distribution factor is the injection shift factor (ISF), which
quantifies the redistribution of power through each transmis-
sion line following a change in generation or load on a
particular bus. In essence, the ISF captures the sensitivity of
the flow through a line with respect to changes in generation
or load. Other DFs are the PTDF, LODF, and OTDF [7], which
can all be derived from the ISFs. In this section, we describe
the proposed approach to estimate ISFs using LSE and then
the computation of other DFs once the ISF estimates have
been obtained.

A. Computation of ISFs

The ISF of line Lk-l (assume positive real power flow from
bus k to l) with respect to bus i, denoted by Ψi

k-l, is a linear
approximation of the sensitivity of the active power flow in
line Lk-l with respect to the active power injection at node
i with the slack bus defined and all other quantities constant.
Let Pi(t) and Pi(t+∆t), respectively, denote the active power
injection at bus i and times t and t+ ∆t, ∆t > 0 and small.
Define ∆Pi(t) = Pi(t + ∆t) − Pi(t) and denote the change
in active power flow in line Lk-l resulting from ∆Pi(t) by
∆P i

k-l(t). Then, based on the definition of ISF, it follows that

Ψi
k-l :=

∂Pk-l

∂Pi
≈ ∆P i

k-l(t)

∆Pi(t)
. (1)

In order to obtain Ψi
k-l, we also need ∆P i

k-l(t), which are not
readily available from PMU measurements. We assume that
the net variation in active power through line Lk-l, denoted by
∆Pk-l(t), however, is available from PMU measurements. We
express this net variation as the sum of active power variations
in line Lk-l due to active power injection variations at each
bus i:

∆Pk-l(t) = ∆P 1
k-l(t) + · · ·+ ∆Pn

k-l(t). (2)

Equivalently, by substituting (1) into (2), we can rewrite (2)
as

∆Pk-l(t) ≈ ∆P1(t)Ψ1
k-l + · · ·+ ∆Pn(t)Ψn

k-l,

where Ψi
k-l ≈

∆P i
k-l

∆Pi
, i = 1, . . . , n. Suppose m + 1 sets

of synchronized measurements are available. Let ∆Pi[j] =
∆Pi(j∆t) and ∆Pk-l[j] = ∆Pk-l(j∆t), j = 1, . . . ,m,
and define ∆Pk-l = [∆Pk-l[1], . . . ,∆Pk-l[j], . . . ,∆Pk-l[m]]T ,
∆Pi = [∆Pi[1], . . . ,∆Pi[j], . . . ,∆Pi[m]]T , and Ψk-l =
[Ψ1

k-l, . . . ,Ψ
i
k-l, . . . ,Ψ

n
k-l]

T . Further, suppose m > n, then we
obtain the following overdetermined system:

∆Pk-l =
[
∆P1 · · · ∆Pi · · · ∆Pn

]
Ψk-l. (3)

For ease of notation, let ∆P represent the m × n matrix
[∆P1, . . . ,∆Pi, . . . ,∆Pn]. Then, the system in (3) is of the
form ∆Pk-l = ∆PΨk-l.

The vector of ISFs for line Lk-l, Ψk-l = [Ψ1
k-l, . . . ,Ψ

n
k-l]

T ,
can be obtained by solving the following LSE problem:

min
Ψk-l

eT e, (4)
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Fig. 1: Network topology for WECC 3-machine 9-bus system.

TABLE I: Comparison of ISFs obtained for Example 1.

Line Actual (p.u.) Model-based (p.u.) LSE (p.u.)
∆P4-5 -0.2970 -0.3196 -0.3022
∆P4-6 -0.1734 -0.1804 -0.1749
∆P7-8 +0.1838 +0.1804 +0.1830

where e = ∆Pk-l − ∆PΨk-l, the solution to which is
Ψ̂k-l = (∆PT ∆P )−1∆PT ∆Pk-l. In doing so, we make
two key assumptions: (i) the ISFs are approximately constant
across the m+ 1 measurements, and (ii) the regressor matrix
has full column rank.

Example 1 (3-Machine 9-Bus System): We illustrate the
concepts described above with the Western Electricity Coordi-
nating Council (WECC) 3-machine 9-bus system, the one-line
diagram for which is shown in Fig. 1. In order to simulate
PMU measurements of slight fluctuations in active power
injection at each bus, we create times-series data for the active
power injection at each bus. In particular, the injection at node
i, denoted by Pi, is given by

Pi[j] = P 0
i [j] + σ1P

0
i [j]v1 + σ2v2, (5)

where P 0
i [j] is the nominal power injection at node i at instant

j∆t, and v1 and v2 are pseudorandom values drawn from stan-
dard normal distributions with 0-mean and standard deviations
σ1 = 0.1 and σ2 = 0.1, respectively. The first component
of variation, σ1P

0
i [j]v1 represents the inherent fluctuations

in generation and load, while the second component, σ2v2,
represents random measurement noise.

In this example, 601 sets of synchronized line flow and bus
injection data are acquired, i.e., m = 600. For each set of
bus injection data obtained at a particular time instant, we
compute the power flow, allowing the slack bus to absorb all
power imbalances, and compute the active power flow through
line Lk-l for that time instant. By taking the difference between
consecutive line flow measurements, we obtain the vector Pk-l
in (3). Similarly, we obtain the regressor matrix on the right-
hand side of (3) by taking the differences between consecutive
values of bus power injections. Suppose a 0.5 p.u. increase is
applied to G2 at bus 2 and the slack bus absorbs the resulting
power imbalance. Table I shows a comparison between the
corresponding effect on three lines computed from actual
power flow solution, linearized model-based approximation,
and our proposed measurement-based method. It is evident
that our measurement-based approach provides more accurate
results than the model-based one. �
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TABLE II: Comparison of change in active power line flows
with outage in line L8-9.

Line Actual (p.u.) Model-based (p.u.) LSE (p.u.)
∆P1-4 0.0071 0.0 0.0027
∆P4-5 0.2374 0.2410 0.2301
∆P5-7 0.2349 0.2410 0.2297
∆P4-6 -0.2303 -0.2410 -0.2274
∆P6-9 -0.2290 -0.2410 -0.2247
∆P7-8 0.2458 0.2410 0.2441
∆P3-9 0.0 0.0 0.0
∆P2-7 0.0 0.0 0.0

B. Computation of Other Distribution Factors

Once the ISFs are obtained via online estimation, we can
compute other relevant linear sensitivity distribution factors.
In this section, we describe the algorithm to obtain PTDFs
and subsequently LODFs.

1) Power Transfer Distribution Factor (PTDF): The PTDF,
denoted by Φk′l′

k-l , approximates the sensitivity of the active
power flow on line Lk-l with respect to an active power transfer
of a given amount of power, ∆Pk′l′ , from bus k′ to l′ [7]. The
PTDF can be computed as a superposition of an injection at
bus k′ and a withdrawal at bus l′, where the slack bus accounts
for the power imbalance in each case. Thus,

Φk′l′

k-l = Ψk′

k-l −Ψl′

k-l,

where Ψk′

k-l and Ψl′

k-l are the line flow sensitivities in line Lk-l
with respect to injections at buses k′ and l′, respectively.

2) Line Outage Distribution Factor (LODF): The LODF,
denoted by Ξk′-l′

k-l , approximates the active power flow change
in line Lk-l due to the outage of line k′-l′ as a percentage of
pre-outage active power flow through k′-l′ [7]. Suppose line
Lk-l is connects bus k to l, while line k′-l′ connects bus k′ to
l′. In this case, Ξk′-l′

k-l is expressed as

Ξk′-l′
k-l =

Φk′l′

k-l

1− Φk′l′
k′-l′

=
Ψk′

k-l −Ψl′

k-l

1− (Ψk′
k′-l′ −Ψl′

k′-l′)
.

Example 2 (3-Machine 9-Bus System): Consider again the
system in Fig. 1; in this example, we examine the scenario
with outage in line L8-9. Particularly, we compare the change
in actual power flowing across each remaining line due to
the line outage to the corresponding quantities computed from
the estimated ISFs and the model-based approximate ISFs. In
general, as shown in Table II, the measurement-based approach
outperforms the model-based one. �

III. CASE STUDY

With a model of the system, power system operators obtain
the DFs offline and use them in online N-1 contingency
analysis. In particular, operators must ensure that the power
system remains operable with an outage in any single power
system asset. For example, LODFs indicate the portion of pre-
outage flow in a line, after its outage, that is redistributed
onto remaining lines. Using current active power line flows
and LODFs, we can estimate the flow through all other lines
if there were an outage on one line. If no line constraints
are violated with any single line outage, we conclude the

Fig. 2: Network topology for IEEE 14-bus system.

system is N-1 secure with respect to line outages. The pre-
calculated model-based LODFs may not, however, be accurate
if the system operating point and network topology deviate
sufficiently far away from those at which the sensitivity factors
were computed.

In this section, we apply the ideas presented previously in
contingency analysis for the IEEE 14-bus system, the network
topology of which is shown in Fig. 2. In this case study,
we compute the LODFs offline using the original model and
compare the accuracy of these compared to the DFs estimated
online in contingency analysis. Next, we assume that line
L10-11 fails in an open-circuit fashion but is undetected by
system operators. This scenario is realistic since operators may
not have full knowledge of current conditions in neighboring
control areas, one of which could contain L10-11. For these
studies, we construct net active power injection “measure-
ments” as in Example 1, again with σ1 = σ2 = 0.1. And
line flows are inferred from power flows computed for each
set of injections.

A. Comparison of DFs in base case contingency analysis

In Table III, we present contingency analysis results for
only the hypothetical case that line L4-5 fails. The line flow
predictions obtained using the model-based approximation

TABLE III: Contingency analysis on base case system.

Line Actual (p.u.) Model-based (p.u.) LSE (p.u.)
∆P1-2 0.2019 0.1758 0.1962
∆P1-5 -0.1762 -0.1758 -0.1643
∆P2-3 0.1530 0.1465 0.1494
∆P2-4 0.3185 0.3047 0.3075
∆P2-5 -0.2816 -0.2754 -0.2698
∆P3-4 0.1423 0.1465 0.1409
∆P4-7 -0.0991 -0.0910 -0.1000
∆P4-9 -0.0566 -0.0531 -0.0571
∆P5-6 0.1615 0.1441 0.1535
∆P6-11 0.0981 0.0882 0.0938
∆P6-12 0.0127 0.0099 0.0120
∆P6-13 0.0507 0.0459 0.0477
∆P7-8 0.0 0.0 0.0
∆P7-9 -0.0991 -0.0910 -0.1000
∆P9-10 -0.0947 -0.0882 -0.0952
∆P9-14 -0.0610 -0.0559 -0.0619
∆P10-11 -0.0948 -0.0882 -0.0939
∆P12-13 0.0125 0.0099 0.0126
∆P13-14 0.0619 0.0559 0.0602

3



TABLE IV: Contingency analysis on modified system.

Pre-contingency Post-contingency
Line Actual (p.u.) Actual (p.u.) Model-based (p.u.) LSE (p.u.)
P1-2 1.5684 1.8004 1.7492 1.8084
P1-5 0.7582 0.5610 0.5774 0.5769
P2-3 0.7295 0.9065 0.8803 0.9052
P2-4 0.5617 0.9268 0.8751 0.9218
P2-5 0.4172 0.0933 0.1339 0.1146
P3-4 -0.2358 -0.0717 -0.0850 -0.0700
P4-5 -0.6124 0.0 0.0 0.0
P4-7 0.2801 0.2107 0.1864 0.2148
P4-9 0.1597 0.1201 0.1051 0.1225
P5-6 0.4452 0.5626 0.5935 0.5604
P6-11 0.0351 0.0351 0.1259 0.0403
P6-12 0.0887 0.1125 0.0989 0.1109
P6-13 0.2094 0.3029 0.2567 0.2972
P7-8 0.0 0.0 0.0 0.0
P7-9 0.2801 0.2107 0.1864 0.2148
P9-10 0.0903 0.0904 -0.0004 0.0899
P9-14 0.0544 -0.0545 -0.0031 -0.0477
P12-13 0.0268 0.0501 0.0370 0.0489
P13-14 0.0976 0.2116 0.1551 0.2053

and the measurement-based estimation appear almost equally
effective when compared to the exact solution. Actually, for
contingency under consideration here, the average deviation
away from the exact power flow solution is 0.0069 p.u. using
the model-based approximation method, while the average
error is 0.0034 p.u. using the measurement-based estimation
method, about half that obtained by the former traditional
method. In this case, the accuracy of the traditional approach
seems comparable to the LSE method. However, the proposed
LSE method, due to its adaptability to changing operating
points and network topology, is especially advantageous over
the traditional method for a case in which the system no longer
matches the model that was used to compute the DFs, as we
illustrate next.

B. Comparison of DFs with undetected line outage

Suppose a line outage occurs in L10-11, unbeknownst to sys-
tem operators, perhaps because it is located in a neighboring
control area. Contingency analysis continues to be conducted
on the system using the LODFs computed based on the system
model, which is no longer accurate due to the undetected line
outage. For the revised system with line outage, in Table IV,
we present contingency analysis results in the hypothetical
case in which line L4-5 fails. More specifically, we compare
between pre- and post-contingency (of L4-5) actual line flows,
model-based computed line flows, and measurement-based
estimated line flows. A rough visual inspection of the post-
contingency line flows reveals that the LSE prediction (col-
umn 5), which is updated by taking up-to-date measurements
of bus injection and line flow incremental changes, is much
closer to the actual post-contingency flow (column 3) than
the model-based approximations (column 4). In fact, for the
L4-5 contingency under consideration, with the model-based
approximation approach, the average deviation away from the
exact power flow solution is 0.0346 p.u., while, with the
measurement-based approach, the average error is 0.0052 p.u.,
almost an order of magnitude smaller.

Further, suppose that the thermal limit of lines L2-3 and
L13-14 are 0.9 p.u. and 0.2 p.u., respectively. We note that
the actual post-contingency flow on these lines would be

0.9065 p.u. and 0.2107 p.u., both violating their respective
thermal limits. While our measurement-based method captures
these overloads, the model-based LODFs are out-of-date and
do not alarm operators to the potential problem if the contin-
gency on L4-5 were to occur. On the other hand, suppose the
thermal line limit on L6-11 is 0.1 p.u. The post-contingency
flow predicted by the model-based method is 0.1259 p.u., over
the prescribed limit, while the actual flow is only 0.0351 p.u.
In this case, the model-based LODFs causes a misdetection,
while using the measurement-based ones, we obtain a much
more accurate estimate of the actual post-contingency flow.

IV. CONCLUDING REMARKS

In this paper, we presented a method to estimate DFs by
employing PMU measurements collected in real-time that does
not rely on the system power flow model. Beyond eliminating
the reliance on the system model, as shown in the examples
and the case study in Sections II and III, the proposed
measurement-based approach provides more accurate results
than conventional model-based approximations and can adapt
to unexpected system topology and operating point changes.

Further work includes accurate estimation of DFs in the
presence of corrupted measurements or the availability of
only a subset of measurements. Also, the measurement-based
method necessitates an over-determined system. Hence, an
avenue for future work would be to devise algorithms that
estimate the DFs accurately using fewer measurements.
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[8] T. Güler, G. Gross, and M. Liu, “Generalized line outage distribution
factors,” Power Systems, IEEE Transactions on, vol. 22, no. 2, pp. 879–
881, 2007.

[9] J. Guo, Y. Fu, Z. Li, and M. Shahidehpour, “Direct calculation of
line outage distribution factors,” IEEE Transactions on Power Systems,
vol. 24, no. 3, pp. 1633 – 1634, 2009.

[10] J. E. Tate and T. J. Overbye, “Line outage detection using phasor angle
measurements,” IEEE Transactions on Power Systems, vol. 23, no. 4,
pp. 1644 – 1652, 2008.

[11] H. Zhu and G. B. Giannakis, “Sparse overcomplete representations for
efficient identification of power line outages,” IEEE Transactions on
Power Systems, vol. 27, no. 4, pp. 2215 – 2224, 2012.

[12] E. B. Makram, M. C. Vutsinas, A. A. Girgis, and Z. Zhao, “Contingency
analysis using synchrophasor measurements,” Electric Power Systems
Research, vol. 88, pp. 64 – 68, 2012.

[13] J. De La Ree, V. Centeno, J. Thorp, and A. Phadke, “Synchronized
phasor measurement applications in power systems,” IEEE Transactions
on Smart Grid, vol. 1, no. 1, pp. 20 –27, june 2010.

4


